
Simulink® Coder™

Reference

R2014b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Reference
© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)
March 2013 Online only Revised for Version 8.4 (Release 2013a)
September 2013 Online only Revised for Version 8.5 (Release 2013b)
March 2014 Online only Revised for Version 8.6 (Release 2014a)
October 2014 Online only Revised for Version 8.7 (Release 2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/




v

Contents

Simulink Code Generation Limitations
1

Simulink Code Generation Limitations . . . . . . . . . . . . . . . . . 1-2

Alphabetical List
2

Blocks — Alphabetical List
3

Configuration Parameters for Simulink Models
4

Code Generation Pane: General . . . . . . . . . . . . . . . . . . . . . . . 4-2
Code Generation: General Tab Overview . . . . . . . . . . . . . . . . 4-4
System target file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Target hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Build configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Tool/Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Compiler optimization level . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Custom compiler optimization flags . . . . . . . . . . . . . . . . . . . 4-14



vi Contents

Generate makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Make command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Template makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Ignore custom storage classes . . . . . . . . . . . . . . . . . . . . . . . 4-19
Ignore test point signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Select objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Prioritized objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
Set Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
Set Objectives — Code Generation Advisor Dialog Box . . . . 4-23
Check Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Check model before generating code . . . . . . . . . . . . . . . . . . 4-26
Generate code only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Build/Generate Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
Package code and artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
Zip file name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30

Code Generation Pane: Report . . . . . . . . . . . . . . . . . . . . . . . 4-32
Code Generation: Report Tab Overview . . . . . . . . . . . . . . . . 4-33
Create code generation report . . . . . . . . . . . . . . . . . . . . . . . 4-33
Open report automatically . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Code-to-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
Model-to-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
Generate model Web view . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
Eliminated / virtual blocks . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
Traceable Simulink blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
Traceable Stateflow objects . . . . . . . . . . . . . . . . . . . . . . . . . 4-43
Traceable MATLAB functions . . . . . . . . . . . . . . . . . . . . . . . 4-44
Static code metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45
Summarize which blocks triggered code replacements . . . . . 4-46

Code Generation Pane: Comments . . . . . . . . . . . . . . . . . . . . 4-48
Code Generation: Comments Tab Overview . . . . . . . . . . . . . 4-49
Include comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-49
Simulink block / Stateflow object comments . . . . . . . . . . . . 4-50
MATLAB source code as comments . . . . . . . . . . . . . . . . . . . 4-51
Show eliminated blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52
Verbose comments for SimulinkGlobal storage class . . . . . . 4-53
Operator annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-54
Simulink block descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 4-55
Simulink data object descriptions . . . . . . . . . . . . . . . . . . . . 4-56
Custom comments (MPT objects only) . . . . . . . . . . . . . . . . . 4-57
Custom comments function . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
Stateflow object descriptions . . . . . . . . . . . . . . . . . . . . . . . . 4-60



vii

Requirements in block comments . . . . . . . . . . . . . . . . . . . . 4-61
MATLAB function help text . . . . . . . . . . . . . . . . . . . . . . . . 4-62

Code Generation Pane: Symbols . . . . . . . . . . . . . . . . . . . . . . 4-64
Code Generation: Symbols Tab Overview . . . . . . . . . . . . . . 4-66
Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-67
Global types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-68
Field name of global types . . . . . . . . . . . . . . . . . . . . . . . . . 4-70
Subsystem methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-72
Subsystem method arguments . . . . . . . . . . . . . . . . . . . . . . . 4-74
Local temporary variables . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76
Local block output variables . . . . . . . . . . . . . . . . . . . . . . . . 4-78
Constant macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
Shared utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-81
Minimum mangle length . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82
Maximum identifier length . . . . . . . . . . . . . . . . . . . . . . . . . 4-84
System-generated identifiers . . . . . . . . . . . . . . . . . . . . . . . . 4-85
Generate scalar inlined parameter as . . . . . . . . . . . . . . . . . 4-89
Signal naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-90
M-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-91
Parameter naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-93
#define naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94
Use the same reserved names as Simulation Target . . . . . . 4-95
Reserved names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-96

Code Generation Pane: Custom Code . . . . . . . . . . . . . . . . . . 4-98
Code Generation: Custom Code Tab Overview . . . . . . . . . . 4-100
Use the same custom code settings as Simulation Target . . 4-100
Use local custom code settings (do not inherit from main

model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101
Source file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-102
Header file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-103
Initialize function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-104
Terminate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105
Include directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105
Source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-107
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-108

Code Generation Pane: Debug . . . . . . . . . . . . . . . . . . . . . . . 4-110
Code Generation: Debug Tab Overview . . . . . . . . . . . . . . . 4-110
Verbose build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-111
Retain .rtw file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-111
Profile TLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-112
Start TLC debugger when generating code . . . . . . . . . . . . 4-113



viii Contents

Start TLC coverage when generating code . . . . . . . . . . . . . 4-114
Enable TLC assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-115

Code Generation Pane: Interface . . . . . . . . . . . . . . . . . . . . 4-117
Code Generation: Interface Tab Overview . . . . . . . . . . . . . 4-120
Standard math library . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-120
Code replacement library . . . . . . . . . . . . . . . . . . . . . . . . . 4-121
Custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-124
Shared code placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-124
Support: floating-point numbers . . . . . . . . . . . . . . . . . . . . 4-125
Support: non-finite numbers . . . . . . . . . . . . . . . . . . . . . . . 4-126
Support: complex numbers . . . . . . . . . . . . . . . . . . . . . . . . 4-127
Support: absolute time . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-128
Support: continuous time . . . . . . . . . . . . . . . . . . . . . . . . . 4-129
Support: non-inlined S-functions . . . . . . . . . . . . . . . . . . . . 4-131
Support: variable-size signals . . . . . . . . . . . . . . . . . . . . . . 4-132
Multiword type definitions . . . . . . . . . . . . . . . . . . . . . . . . 4-133
Maximum word length . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-135
Code interface packaging . . . . . . . . . . . . . . . . . . . . . . . . . . 4-136
Multi-instance code error diagnostic . . . . . . . . . . . . . . . . . 4-139
Pass root-level I/O as . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-141
Classic call interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-142
Use dynamic memory allocation for model initialization . . 4-143
Use dynamic memory allocation for model block

instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-144
Single output/update function . . . . . . . . . . . . . . . . . . . . . . 4-146
Terminate function required . . . . . . . . . . . . . . . . . . . . . . . 4-148
Generate preprocessor conditionals . . . . . . . . . . . . . . . . . . 4-149
Suppress error status in real-time model data structure . . 4-151
Combine signal/state structures . . . . . . . . . . . . . . . . . . . . 4-152
Configure Model Functions . . . . . . . . . . . . . . . . . . . . . . . . 4-154
Block parameter visibility . . . . . . . . . . . . . . . . . . . . . . . . . 4-155
Internal data visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-156
Block parameter access . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-157
Internal data access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-158
External I/O access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-159
Generate destructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-161
Configure C++ Class Interface . . . . . . . . . . . . . . . . . . . . . 4-162
MAT-file logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-162
MAT-file variable name modifier . . . . . . . . . . . . . . . . . . . . 4-165
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-166
Generate C API for: signals . . . . . . . . . . . . . . . . . . . . . . . . 4-167
Generate C API for: parameters . . . . . . . . . . . . . . . . . . . . 4-168
Generate C API for: states . . . . . . . . . . . . . . . . . . . . . . . . 4-169



ix

Generate C API for: root-level I/O . . . . . . . . . . . . . . . . . . . 4-170
Transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-171
MEX-file arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-172
Static memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 4-173
Static memory buffer size . . . . . . . . . . . . . . . . . . . . . . . . . 4-174

Code Generation Pane: RSim Target . . . . . . . . . . . . . . . . . 4-176
Code Generation: RSim Target Tab Overview . . . . . . . . . . 4-176
Enable RSim executable to load parameters from a MAT-file 4-177
Solver selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-177
Force storage classes to AUTO . . . . . . . . . . . . . . . . . . . . . 4-178

Code Generation Pane: S-Function Target . . . . . . . . . . . . . 4-180
Code Generation S-Function Target Tab Overview . . . . . . 4-180
Create new model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-180
Use value for tunable parameters . . . . . . . . . . . . . . . . . . . 4-181
Include custom source code . . . . . . . . . . . . . . . . . . . . . . . . 4-182

Code Generation Pane: Tornado Target . . . . . . . . . . . . . . . 4-183
Code Generation: Tornado Target Tab Overview . . . . . . . . 4-184
Standard math library . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-184
Code replacement library . . . . . . . . . . . . . . . . . . . . . . . . . 4-185
Shared code placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187
MAT-file logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-188
MAT-file variable name modifier . . . . . . . . . . . . . . . . . . . . 4-190
Code Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-191
StethoScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-192
Download to VxWorks target . . . . . . . . . . . . . . . . . . . . . . . 4-193
Base task priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-194
Task stack size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-195
External mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-195
Transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-197
MEX-file arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-197
Static memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 4-198
Static memory buffer size . . . . . . . . . . . . . . . . . . . . . . . . . 4-200

Code Generation: Coder Target Pane . . . . . . . . . . . . . . . . . 4-201
Code Generation: Coder Target Pane Overview (previously

“IDE Link Tab Overview”) . . . . . . . . . . . . . . . . . . . . . . . 4-202
Coder Target: Tool Chain Automation Tab Overview . . . . . 4-202
Build format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-204
Build action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-205
Overrun notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207
Function name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-209



x Contents

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-209
Compiler options string . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-211
Linker options string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-212
System stack size (MAUs) . . . . . . . . . . . . . . . . . . . . . . . . . 4-213
Profile real-time execution . . . . . . . . . . . . . . . . . . . . . . . . . 4-214
Profile by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-215
Number of profiling samples to collect . . . . . . . . . . . . . . . . 4-216
Maximum time allowed to build project (s) . . . . . . . . . . . . 4-218
Maximum time allowed to complete IDE operation (s) . . . . 4-219
Export IDE link handle to base workspace . . . . . . . . . . . . 4-220
IDE link handle name . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-221
Source file replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-222

Parameter Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-224
Recommended Settings Summary . . . . . . . . . . . . . . . . . . . 4-224
Parameter Command-Line Information Summary . . . . . . . 4-248

Model Advisor Checks
5

Simulink Coder Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Simulink Coder Checks Overview . . . . . . . . . . . . . . . . . . . . . 5-2
Identify blocks using one-based indexing . . . . . . . . . . . . . . . . 5-2
Check solver for code generation . . . . . . . . . . . . . . . . . . . . . . 5-3
Check for blocks not supported by code generation . . . . . . . . 5-5
Check and update model to use toolchain approach to build

generated code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Check and update the embedded target model to use ert.tlc

system target file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Check for blocks that have constraints on tunable

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Check for model reference configuration mismatch . . . . . . . 5-10
Check sample times and tasking mode . . . . . . . . . . . . . . . . 5-11
Code Generation Advisor Checks . . . . . . . . . . . . . . . . . . . . 5-11



xi

Parameters for Creating Protected Models
6

Create Protected Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Create Protected Model: Overview . . . . . . . . . . . . . . . . . . . . 6-2
Open read-only view of model . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Generate code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Generated code content type . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Create protected model in . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Create harness model for protected model . . . . . . . . . . . . . . . 6-6

Tools — Alphabetical List
7



xii



1

Simulink Code Generation Limitations



1 Simulink Code Generation Limitations

1-2

Simulink Code Generation Limitations

The following topics identify Simulink code generation limitations:

• “C++ Language Limitations”
• “packNGo Function Limitations”
• “Tunable Expression Limitations”
• “Limitations on Data Type Specifications in Workspace”
• “Code Reuse Limitations for Subsystems”
• “Simulink Coder Model Referencing Limitations”
• “External Mode Limitations”
• “Noninlined S-Function Parameter Type Limitations”
• “S-Function Target Limitations”
• “Rapid Simulation Target Limitations”
• “Asynchronous Support Limitations”
• “C API Limitations”
• “Supported Products and Block Usage”



2

Alphabetical List



2 Alphabetical List

2-2

addCompileFlags
Add compiler options to model build information

Syntax

addCompileFlags(buildinfo, options, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
options

A character array or cell array of character arrays that specifies the compiler options
to be added to the build information. The function adds each option to the end of a
compiler option vector. If you specify multiple options within a single character array,
for example '-Zi -Wall', the function adds the string to the vector as a single
element. For example, if you add '-Zi -Wall' and then '-O3', the vector consists
of two elements, as shown below.

'-Zi -Wall'    '-O3'

groups (optional)
A character array or cell array of character arrays that groups specified compiler
options. You can use groups to

• Document the use of specific compiler options
• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options
• Multiple group names to collections of compiler options (available for non-

makefile build environments only)



 addCompileFlags

2-3

To... Specify groups as a...

Apply one group name to one
or more compiler options

Character array.

Apply different group names
to compiler options

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for options.

Note:

• To specify compiler options to be used in the standard Simulink Coder™
makefile build process, specify groups as either 'OPTS' or 'OPT_OPTS'.

• To control compiler optimizations for your Simulink Coder makefile build at
Simulink GUI level, use the Compiler optimization level parameter on the
Code Generation pane of the Simulink Configuration Parameters dialog
box. The Compiler optimization level parameter provides
• Target-independent values Optimizations on (faster runs) and

Optimizations off (faster builds), which allow you to easily
toggle compiler optimizations on and off during code development

• The value Custom for entering custom compiler optimization flags at
Simulink GUI level (rather than at other levels of the build process)

If you use the configuration parameter Make command to specify compiler
options for your Simulink Coder makefile build using OPT_OPTS, MEX_OPTS
(except MEX_OPTS="-v"), or MEX_OPT_FILE, the value of Compiler
optimization level is ignored and a warning is issued about the ignored
parameter.

Description

The addCompileFlags function adds specified compiler options to the model build
information. Simulink Coder stores the compiler options in a vector. The function adds
options to the end of the vector based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can use an optional
groups argument to group your options.



2 Alphabetical List

2-4

Examples

• Add the compiler option -O3 to build information myModelBuildInfo and place the
option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, '-O3', 'OPTS');

• Add the compiler options -Zi and -Wall to build information myModelBuildInfo
and place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, '-Zi -Wall', 'OPT_OPTS');

• For a non-makefile build environment, add the compiler options -Zi, -Wall, and -
O3 to build information myModelBuildInfo. Place the options -Zi and -Wall in the
group Debug and the option -O3 in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

  {'Debug' 'MemOpt'});

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addDefines | addLinkFlags | getCompileFlags



 addDefines

2-5

addDefines
Add preprocessor macro definitions to model build information

Syntax

addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
macrodefs

A character array or cell array of character arrays that specifies the preprocessor
macro definitions to be added to the object. The function adds each definition to the
end of a compiler option vector. If you specify multiple definitions within a single
character array, for example '-DRT -DDEBUG', the function adds the string to the
vector as a single element. For example, if you add '-DPROTO -DDEBUG' and then
'-DPRODUCTION', the vector consists of two elements, as shown below.

'-DPROTO -DDEBUG'    '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups specified definitions.
You can use groups to

• Document the use of specific macro definitions
• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions
• Multiple group names to collections of macro definitions (available for non-

makefile build environments only)



2 Alphabetical List

2-6

To... Specify groups as a...

Apply one group name to one
or more macro definitions

Character array.

Apply different group names
to macro definitions

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for macrodefs.

Note: To specify macro definitions to be used in the standard Simulink Coder
makefile build process, specify groups as either 'OPTS' or 'OPT_OPTS'.

Description
The addDefines function adds specified preprocessor macro definitions to the model
build information. The Simulink Coder software stores the definitions in a vector. The
function adds definitions to the end of the vector based on the order in which you specify
them.

In addition to the required buildinfo and macrodefs arguments, you can use an
optional groups argument to group your options.

Examples
• Add the macro definition -DPRODUCTION to build information myModelBuildInfo

and place the definition in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, '-DPRODUCTION', 'OPTS');

• Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, ...

  '-DPROTO -DDEBUG', 'OPT_OPTS');

• For a non-makefile build environment, add the macro definitions -DPROTO, -DDEBUG,
and -DPRODUCTION to build information myModelBuildInfo. Place the definitions
-DPROTO and -DDEBUG in the group Debug and the definition -DPRODUCTION in the
group Release.



 addDefines

2-7

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, ...

  {'-DPROTO -DDEBUG' '-DPRODUCTION'}, ...

  {'Debug' 'Release'});

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addCompileFlags | addLinkFlags | getDefines



2 Alphabetical List

2-8

addIncludeFiles
Add include files to model build information

Syntax
addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of include
files to be added to the build information.

The filename strings can include wildcard characters, provided that the dot delimiter
(.) is present. Examples are '*.*', '*.h', and '*.h*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and corresponding
filename.

paths (optional)
A character array or cell array of character arrays that specifies paths to the include
files. The function adds the paths to the end of a vector in the order that you specify



 addIncludeFiles

2-9

them. If you specify a single path as a character array, the function uses that path for
all files.

groups (optional)
A character array or cell array of character arrays that groups specified include files.
You can use groups to

• Document the use of specific include files
• Retrieve or apply groups of include files

You can apply

• A single group name to an include file
• A single group name to multiple include files
• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name to one
or more include files

Character array.

Apply different group names to
include files

Cell array of character arrays such that the number
of group names that you specify matches the
number of elements you specify for filenames.

Description

The addIncludeFiles function adds specified include files to the model build
information. The Simulink Coder software stores the include files in a vector. The
function adds the filenames to the end of the vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to include files it adds to the build
information



2 Alphabetical List

2-10

If You Specify an Optional
Argument as a...

The Function...

Cell array of character arrays Pairs each character array with a specified include file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('') for paths.

Note: The packNGo function also can add include files to the model build information. If
you call the packNGo function to package model code, packNGo finds include files from
source and include paths recorded in the model build information and adds them to the
build information.

Examples
• Add the include file mytypes.h to build information myModelBuildInfo and place

the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, ... 

'mytypes.h', '/proj/src', 'SysFiles');

• Add the include files etc.h and etc_private.h to build information
myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, ... 

{'etc.h' 'etc_private.h'}, ...

'/proj/src', 'AppFiles');

• Add the include files etc.h, etc_private.h, and mytypes.h to build information
myModelBuildInfo. Group the files etc.h and etc_private.h with the string
AppFiles and the file mytypes.h with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, ... 

{'etc.h' 'etc_private.h' 'mytypes.h'}, ... 

'/proj/src', ...

{'AppFiles' 'AppFiles' 'SysFiles'});

• Add the .h files in a specified folder to build information myModelBuildInfo and
place the files in the group HFiles.



 addIncludeFiles

2-11

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, ... 

'*.h', '/proj/src', 'HFiles');

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludePaths | addSourceFiles | addSourcePaths | findIncludeFiles |
getIncludeFiles | updateFilePathsAndExtensions | updateFileSeparator



2 Alphabetical List

2-12

addIncludePaths
Add include paths to model build information

Syntax
addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
paths

A character array or cell array of character arrays that specifies include file paths to
be added to the build information. The function adds the paths to the end of a vector
in the order that you specify them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and corresponding
filename.

groups (optional)
A character array or cell array of character arrays that groups specified include
paths. You can use groups to

• Document the use of specific include paths
• Retrieve or apply groups of include paths

You can apply



 addIncludePaths

2-13

• A single group name to an include path
• A single group name to multiple include paths
• Multiple group names to collections of multiple include paths

To... Specify groups as a...

Apply one group name to one
or more include paths

Character array.

Apply different group names
to include paths

Cell array of character arrays such that the number of
group names that you specify matches the number of
elements you specify for paths.

Description

The addIncludePaths function adds specified include paths to the model build
information. The Simulink Coder software stores the include paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify an
optional groups argument. You can specify groups as a character array or a cell array
of character arrays.

If You Specify an Optional Argument as
a...

The Function...

Character array Applies the character array to include paths it
adds to the build information.

Cell array of character arrays Pairs each character array with a specified
include path. Thus, the length of the cell array
must match the length of the cell array you
specify for paths.

Examples

• Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;



2 Alphabetical List

2-14

addIncludePaths(myModelBuildInfo,...

'/etcproj/etc/etc_build');

• Add the include paths /etcproj/etclib and /etcproj/etc/etc_build to build
information myModelBuildInfo and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo,...

{'/etcproj/etclib' '/etcproj/etc/etc_build'},'etc');

• Add the include paths /etcproj/etclib, /etcproj/etc/etc_build, and /
common/lib to build information myModelBuildInfo. Group the paths /etc/proj/
etclib and /etcproj/etc/etc_build with the string etc and the path /common/
lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...

 '/common/lib'}, {'etc' 'etc' 'shared'});

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludeFiles | addSourceFiles | addSourcePaths | getIncludePaths |
updateFilePathsAndExtensions | updateFileSeparator



 addLinkFlags

2-15

addLinkFlags
Add link options to model build information

Syntax

addLinkFlags(buildinfo, options, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
options

A character array or cell array of character arrays that specifies the linker options
to be added to the build information. The function adds each option to the end of
a linker option vector. If you specify multiple options within a single character
array, for example '-MD -Gy', the function adds the string to the vector as a single
element. For example, if you add '-MD -Gy' and then '-T', the vector consists of
two elements, as shown below.

'-MD -Gy'    '-T'

groups (optional)
A character array or cell array of character arrays that groups specified linker
options. You can use groups to

• Document the use of specific linker options
• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options
• Multiple group names to collections of linker options (available for non-makefile

build environments only)



2 Alphabetical List

2-16

To... Specify groups as a...

Apply one group name to one
or more linker options

Character array.

Apply different group names
to linker options

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for options.

Note: To specify linker options to be used in the standard Simulink Coder makefile
build process, specify groups as either 'OPTS' or 'OPT_OPTS'.

Description

The addLinkFlags function adds specified linker options to the model build
information. The Simulink Coder software stores the linker options in a vector. The
function adds options to the end of the vector based on the order in which you specify
them.

In addition to the required buildinfo and options arguments, you can use an optional
groups argument to group your options.

Examples
• Add the linker -T option to build information myModelBuildInfo and place the

option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags(myModelBuildInfo, '-T', 'OPTS');

• Add the linker options -MD and -Gy to build information myModelBuildInfo and
place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags(myModelBuildInfo, '-MD -Gy', 'OPT_OPTS');

• For a non-makefile build environment, add the linker options -MD, -Gy, and -T to
build information myModelBuildInfo. Place the options -MD and-Gy in the group
Debug and the option -T in the groupTemp.

myModelBuildInfo = RTW.BuildInfo;



 addLinkFlags

2-17

addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

  {'Debug' 'Temp'});

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addCompileFlags | addDefines | getLinkFlags



2 Alphabetical List

2-18

addLinkObjects
Add link objects to model build information

Syntax
addLinkObjects(buildinfo, linkobjs, paths, priority, precompiled, linkonly, groups)

Arguments except buildinfo , linkobjs, and paths are optional. If you specify an
optional argument, you must specify the optional arguments preceding it.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
linkobjs

A character array or cell array of character arrays that specifies the filenames of
linkable objects to be added to the build information. The function adds the filenames
that you specify in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the same priority (see
priority below), the function adds them to the vector based on the order in which
you specify the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input
• Already exist in the linkable object filename vector
• Have a path that matches the path of a matching linkable object filename

A duplicate entry consists of an exact match of a path string and corresponding
linkable object filename.

paths

A character array or cell array of character arrays that specifies paths to the linkable
objects. If you specify a character array, the path string applies to all linkable objects.

priority (optional)



 addLinkObjects

2-19

A numeric value or vector of numeric values that indicates the relative priority of
each specified link object. Lower values have higher priority. The default priority is
1000.

precompiled (optional)
The logical value true or false, or a vector of logical values that indicates whether
each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling and linking and
exists in a specified location.

If precompiled is false (the default), the Simulink Coder build process creates the
link object in the build folder.

This argument is ignored if linkonly equals true.
linkonly (optional)

The logical value true or false, or a vector of logical values that indicates whether
each specified link object is to be used only for linking.

Specify true if the Simulink Coder build process should not build, nor generate
rules in the makefile for building, the specified link object, but should include it
when linking the final executable. For example, you can use this to incorporate link
objects for which source files are not available. If linkonly is true, the value of
precompiled is ignored.

If linkonly is false (the default), rules for building the link objects are added
to the makefile. In this case, the value of precompiled determines which
subsection of the added rules is expanded, START_PRECOMP_LIBRARIES (true) or
START_EXPAND_LIBRARIES (false). The software performs the expansion of the
START_PRECOMP_LIBRARIES or START_EXPAND_LIBRARIES macro only if your code
generation target uses the template makefile approach for building code.

groups (optional)
A character array or cell array of character arrays that groups specified link objects.
You can use groups to

• Document the use of specific link objects
• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object



2 Alphabetical List

2-20

• A single group name to multiple linkable objects
• Multiple group name to collections of multiple linkable objects

To... Specify groups as a...

Apply one group name to one
or more link objects

Character array.

Apply different group names
to link objects

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for linkobjs.

The default value of groups is {''}.

Description

The addLinkObjects function adds specified link objects to the model build
information. The Simulink Coder software stores the link objects in a vector in relative
priority order. If multiple objects have the same priority or you do not specify priorities,
the function adds the objects to the vector based on the order in which you specify them.

In addition to the required buildinfo, linkobjs, and paths arguments, you can
specify the optional arguments priority, precompiled, linkonly, and groups. You
can specify paths and groups as a character array or a cell array of character arrays.

If You Specify paths or groups as a... The Function...

Character array Applies the character array to objects it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified
object. Thus, the length of the cell array must
match the length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a value or vector
of values.

If You Specify priority,
precompiled, or linkonly as a...

The Function...

Value Applies the value to objects it adds to the build
information.



 addLinkObjects

2-21

If You Specify priority,
precompiled, or linkonly as a...

The Function...

Vector of values Pairs each value with a specified object. Thus,
the length of the vector must match the length of
the cell array you specify for linkobjs.

If you choose to specify an optional argument, you must specify optional arguments
preceding it. For example, to specify that objects are precompiled using the
precompiled argument, you must specify the priority argument that precedes
precompiled. You could pass the default priority value 1000, as shown below.
addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

Examples

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10, respectively.
Since libobj2 is assigned the lower numeric priority value, and thus has the higher
priority, the function orders the objects such that libobj2 precedes libobj1 in the
vector.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10]);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Mark both objects as link-only. Since individual priorities are
not specified, the function adds the objects to the vector in the order specified.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/lib1' '/proj/lib/lib2'}, 1000,...

false, true);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10, respectively. Mark
both objects as precompiled, and group them under the name MyTest.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10],...

true, false, 'MyTest');



2 Alphabetical List

2-22

More About
• “Customize Post-Code-Generation Build Processing”



 addNonBuildFiles

2-23

addNonBuildFiles
Add nonbuild-related files to model build information

Syntax
addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments
buildinfo

Build information returned by RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of nonbuild-
related files to be added to the build information.

The filename strings can include wildcard characters, provided that the dot delimiter
(.) is present. Examples are '*.*', '*.DLL', and '*.D*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and corresponding
filename.

paths (optional)
A character array or cell array of character arrays that specifies paths to the
nonbuild files. The function adds the paths to the end of a vector in the order that you
specify them. If you specify a single path as a character array, the function uses that
path for all files.

groups (optional)



2 Alphabetical List

2-24

A character array or cell array of character arrays that groups specified nonbuild
files. You can use groups to

• Document the use of specific nonbuild files
• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file
• A single group name to multiple nonbuild files
• Multiple group names to collections of multiple nonbuild files

To... Specify groups as a...

Apply one group name to one
or more nonbuild files

Character array.

Apply different group names to
nonbuild files

Cell array of character arrays such that the number
of group names that you specify matches the
number of elements you specify for filenames.

Description

The addNonBuildFiles function adds specified nonbuild-related files, such as DLL
files required for a final executable, or a README file, to the model build information.
The Simulink Coder software stores the nonbuild files in a vector. The function adds the
filenames to the end of the vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

If You Specify an Optional Argument
as a...

The Function...

Character array Applies the character array to nonbuild files it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.



 addNonBuildFiles

2-25

If you choose to specify groups, but omit paths, specify a null string ('') for paths.

Examples

• Add the nonbuild file readme.txt to build information myModelBuildInfo and
place the file in the group DocFiles.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, ... 

'readme.txt', '/proj/docs', 'DocFiles');

• Add the nonbuild files myutility1.dll and myutility2.dll to build information
myModelBuildInfo and place the files in the group DLLFiles.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, ... 

{'myutility1.dll' 'myutility2.dll'}, ...

'/proj/dlls', 'DLLFiles');

• Add the DLL files in a specified folder to build information myModelBuildInfo and
place the files in the group DLLFiles.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, ... 

'*.dll', '/proj/dlls', 'DLLFiles');

More About
• “Customize Post-Code-Generation Build Processing”

See Also
getNonBuildFiles



2 Alphabetical List

2-26

addSourceFiles
Add source files to model build information

Syntax
addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments
buildinfo

Build information returned by RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of the source
files to be added to the build information.

The filename strings can include wildcard characters, provided that the dot delimiter
(.) is present. Examples are '*.*', '*.c', and '*.c*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate source file entries that

• You specify as input
• Already exist in the source file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and corresponding
filename.

paths (optional)
A character array or cell array of character arrays that specifies paths to the source
files. The function adds the paths to the end of a vector in the order that you specify
them. If you specify a single path as a character array, the function uses that path for
all files.



 addSourceFiles

2-27

groups (optional)
A character array or cell array of character arrays that groups specified source files.
You can use groups to

• Document the use of specific source files
• Retrieve or apply groups of source files

You can apply

• A single group name to a source file
• A single group name to multiple source files
• Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name to one or
more source files

Character array.

Apply different group names to
source files

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify for
filenames.

Description
The addSourceFiles function adds specified source files to the model build information.
The Simulink Coder software stores the source files in a vector. The function adds the
filenames to the end of the vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to source files it adds to the build
information.

Cell array of character arrays Pairs each character array with a specified source file. Thus, the
length of the cell array must match the length of the cell array
you specify for filenames.



2 Alphabetical List

2-28

If you choose to specify groups, but omit paths, specify a null string ('') for paths.

Examples
• Add the source file driver.c to build information myModelBuildInfo and place the

file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, 'driver.c', ...

'/proj/src', 'Drivers');

• Add the source files test1.c and test2.c to build information myModelBuildInfo
and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, ...

{'test1.c' 'test2.c'}, ...

'/proj/src', 'Tests');

• Add the source files test1.c, test2.c, and driver.c to build information
myModelBuildInfo. Group the files test1.c and test2.c with the string Tests
and the file driver.c with the string Drivers.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, ...

{'test1.c' 'test2.c' 'driver.c'}, ... 

'/proj/src', ...

{'Tests' 'Tests' 'Drivers'});

• Add the .c files in a specified folder to build information myModelBuildInfo and
place the files in the group CFiles.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, ... 

'*.c', '/proj/src', 'CFiles');

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludeFiles | addIncludePaths | addSourcePaths | getSourceFiles |
updateFilePathsAndExtensions | updateFileSeparator



 addSourcePaths

2-29

addSourcePaths
Add source paths to model build information

Syntax
addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
paths

A character array or cell array of character arrays that specifies source file paths to
be added to the build information. The function adds the paths to the end of a vector
in the order that you specify them.

The function removes duplicate source file entries that

• You specify as input
• Already exist in the source path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and corresponding
filename.

Note: The Simulink Coder software does not check whether a specified path string is
valid.

groups (optional)
A character array or cell array of character arrays that groups specified source paths.
You can use groups to



2 Alphabetical List

2-30

• Document the use of specific source paths
• Retrieve or apply groups of source paths

You can apply

• A single group name to a source path
• A single group name to multiple source paths
• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name to one
or more source paths

Character array.

Apply different group names
to source paths

Cell array of character arrays such that the number
of group names that you specify matches the number
of elements you specify for paths.

Description

The addSourcePaths function adds specified source paths to the model build
information. The Simulink Coder software stores the source paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify an
optional groups argument . You can specify groups as a character array or a cell array
of character arrays.

If You Specify an Optional Argument as
a...

The Function...

Character array Applies the character array to source paths it
adds to the build information.

Cell array of character arrays Pairs each character array with a specified
source path. Thus, the length of the character
array or cell array must match the length of the
cell array you specify for paths.

Note: The Simulink Coder software does not check whether a specified path string is
valid.



 addSourcePaths

2-31

Examples

• Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo,...

'/etcproj/etc/etc_build');

• Add the source paths /etcproj/etclib and /etcproj/etc/etc_build to build
information myModelBuildInfo and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo,...

{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

• Add the source paths /etcproj/etclib, /etcproj/etc/etc_build, and /
common/lib to build information myModelBuildInfo. Group the paths /etc/proj/
etclib and /etcproj/etc/etc_build with the string etc and the path /common/
lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...

 '/common/lib'}, {'etc' 'etc' 'shared'});

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludeFiles | addIncludePaths | addSourceFiles | getSourcePaths |
updateFilePathsAndExtensions | updateFileSeparator



2 Alphabetical List

2-32

addTMFTokens
Add template makefile (TMF) tokens that provide build-time information for makefile
generation

Syntax
addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
tokennames

A character array or cell array of character arrays that specifies names of TMF
tokens (for example, '|>CUSTOM_OUTNAME<|') to be added to the build information.
The function adds the token names to the end of a vector in the order that you specify
them.

If you specify a token name that already exists in the vector, the first instance takes
precedence and its value is used for replacement.

tokenvalues

A character array or cell array of character arrays that specifies TMF token values
corresponding to the previously-specified TMF token names. The function adds the
token values to the end of a vector in the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups specified TMF tokens.
You can use groups to

• Document the use of specific TMF tokens
• Retrieve or apply groups of TMF tokens

You can apply



 addTMFTokens

2-33

• A single group name to a TMF token
• A single group name to multiple TMF tokens
• Multiple group names to collections of multiple TMF tokens

To... Specify groups as a...

Apply one group name to one
or more TMF tokens

Character array.

Apply different group names to
TMF tokens

Cell array of character arrays such that the number
of group names that you specify matches the
number of elements you specify for tokennames.

Description

Call the addTMFTokens function inside a post code generation command to provide
build-time information to help customize makefile generation. The tokens specified
in the addTMFTokens function call must be handled in the template makefile (TMF)
for the target selected for your model. For example, if your post code generation
command calls addTMFTokens to add a TMF token named |>CUSTOM_OUTNAME<| that
specifies an output file name for the build, the TMF must take action with the value of |
>CUSTOM_OUTNAME<| to achieve the desired result. (See “Examples” on page 2-34.)

The addTMFTokens function adds specified TMF token names and values to the model
build information. The Simulink Coder software stores the TMF tokens in a vector. The
function adds the tokens to the end of the vector in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues arguments, you
can specify an optional groups argument. You can specify groups as a character array
or a cell array of character arrays.

If You Specify an Optional Argument
as a...

The Function...

Character array Applies the character array to TMF tokens it adds to the build
information.

Cell array of character arrays Pairs each character array with a specified TMF token. Thus,
the length of the cell array must match the length of the cell
array you specify for tokennames.



2 Alphabetical List

2-34

Examples

Inside a post code generation command, add the TMF token |>CUSTOM_OUTNAME<| and
its value to build information myModelBuildInfo, and place the token in the group
LINK_INFO.

myModelBuildInfo = RTW.BuildInfo;

addTMFTokens(myModelBuildInfo, ...

             '|>CUSTOM_OUTNAME<|', 'foo.exe', 'LINK_INFO');

In the TMF for the target selected for your model, code such as the following uses the
token value to achieve the desired result:

CUSTOM_OUTNAME = |>CUSTOM_OUTNAME<|

...

target:

$(LD) -o $(CUSTOM_OUTNAME) ...

More About
• “Customize Post-Code-Generation Build Processing”



 coder.report.close

2-35

coder.report.close
Close HTML code generation report

Syntax

coder.report.close()

Description

coder.report.close() closes the HTML code generation report.

Examples

Close code generation report for a model

After opening a code generation report for rtwdemo_counter, close the report.

coder.report.close()

More About
• “Reports for Code Generation”

See Also
coder.report.generate | coder.report.open



2 Alphabetical List

2-36

coder.report.generate
Generate HTML code generation report

Syntax

coder.report.generate(model)

coder.report.generate(subsystem)

coder.report.generate(model,Name,Value)

Description

coder.report.generate(model) generates a code generation report for the model.
The build folder for the model must be present in the current working folder.

coder.report.generate(subsystem) generates the code generation report for the
subsystem. The build folder for the subsystem must be present in the current working
folder.

coder.report.generate(model,Name,Value) generates the code generation
report using the current model configuration and additional options specified by one
or more Name,Value pair arguments. Possible values for the Name,Value arguments
are parameters on the Code Generation > Report pane. Without modifying the
model configuration, using the Name,Value arguments you can generate a report with a
different report configuration.

Examples

Generate Code Generation Report for Model

Open the model rtwdemo_counter.

open rtwdemo_counter

Build the model. The model is configured to create and open a code generation report.

rtwbuild('rtwdemo_counter');



 coder.report.generate

2-37

Close the code generation report.

coder.report.close;

Generate a code generation report.

coder.report.generate('rtwdemo_counter');

Generate Code Generation Report for Subsystem

Open the model rtwdemo_counter.

open rtwdemo_counter

Build the subsystem. The model is configured to create and open a code generation
report.

rtwbuild('rtwdemo_counter/Amplifier');

Close the code generation report.

coder.report.close;

Generate a code generation report for the subsystem.

coder.report.generate('rtwdemo_counter/Amplifier');

Generate Code Generation Report to Include Static Code Metrics Report

Generate a code generation report to include a static code metrics report after the build
process, without modifying the model.

Open the model rtwdemo_hyperlinks.

open rtwdemo_hyperlinks

Build the model. The model is configured to create and open a code generation report.

rtwbuild('rtwdemo_hyperlinks');

Close the code generation report.

coder.report.close;



2 Alphabetical List

2-38

Generate a code generation report that includes the static code metrics report.

coder.report.generate('rtwdemo_hyperlinks',

'GenerateCodeMetricsReport','on');

The code generation report opens. In the left navigation pane, click Static Code Metrics
Report to view the report.

Input Arguments

model — Model name
string

Model name specified as a string
Example: ‘rtwdemo_counter’

Data Types: char

subsystem — Subsystem name
string

Subsystem name specified as a string
Example: ‘rtwdemo_counter/Amplifier’

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Each Name,Value argument corresponds to a parameter on the Configuration
Parameters Code Generation > Report pane. When the configuration parameter
GenerateReport is on, the parameters are enabled. The Name,Value arguments
are used only for generating the current report. The arguments will override, but not
modify, the parameters in the model configuration. The following parameters require an
Embedded Coder® license.



 coder.report.generate

2-39

Example: 'GenerateWebview','on','GenerateCodeMetricsReport','on'
includes a model Web view and static code metrics in the code generation report.

Navigation

'IncludeHyperlinkInReport' — Code-to-model hyperlinks
‘off’ | ‘on’

Code-to-model hyperlinks, specified as ‘on’ or ‘off’. Specify ‘on’ to include code-to-model
hyperlinks in the code generation report. The hyperlinks link code to the corresponding
blocks, Stateflow® objects, and MATLAB® functions in the model diagram. For more
information see “Code-to-model”.
Example: ‘'IncludeHyperlinkInReport','on'’

Data Types: char

'GenerateTraceInfo' — Model-to-code highlighting
‘off’ | ‘on’

Model-to-code highlighting, specified as ‘on’ or ‘off’. Specify ‘on’ to include model-to-code
highlighting in the code generation report. For more information see “Model-to-code”.
Example: ‘'GenerateTraceInfo','on'’

Data Types: char

'GenerateWebview' — Model Web view
‘off’ | ‘on’

Model Web view, specified as ‘on’ or ‘off’. Specify ‘on’ to include the model Web view in
the code generation report. For more information, see “Generate model Web view”.
Example: ‘'GenerateWebview','on'’

Data Types: char

Traceability Report Contents

'GenerateTraceReport' — Summary of eliminated and virtual blocks
‘off’ | ‘on’



2 Alphabetical List

2-40

Summary of eliminated and virtual blocks, specified as ‘on’ or ‘off’. Specify ‘on’ to
include a summary of eliminated and virtual blocks in the code generation report. For
more information, see “Eliminated / virtual blocks”.
Example: ‘'GenerateTraceReport','on'’

Data Types: char

'GenerateTraceReportSl' — Summary of Simulink blocks and the corresponding code
location
‘off’ | ‘on’

Summary of the Simulink blocks and the corresponding code location, specified as ‘on’
or ‘off’. Specify ‘on’ to include a summary of the Simulink blocks and the corresponding
code location in the code generation report. For more information, see “Traceable
Simulink blocks”.
Example: ‘'GenerateTraceReportSl','on'’

Data Types: char

'GenerateTraceReportsSf' — Summary of Stateflow objects and the corresponding code
location
‘off’ | ‘on’

Summary of the Stateflow objects and the corresponding code location, specified as ‘on’ or
‘off’. Specify ‘on’ to include a summary of Stateflow objects and the corresponding code
location in the code generation report. For more information, see “Traceable Stateflow
objects”.
Example: ‘'GenerateTraceReportSf','on'’

Data Types: char

'GenerateTraceReportEml' — Summary of MATLAB functions and the corresponding
code location
‘off’ | ‘on’

Summary of the MATLAB functions and the corresponding code location, specified as ‘on’
or ‘off’. Specify ‘on’ to include a summary of the MATLAB objects and the corresponding
code location in the code generation report. For more information, see “Traceable
MATLAB functions”.
Example: ‘'GenerateTraceReportEml','on'’



 coder.report.generate

2-41

Data Types: char

Metrics

'GenerateCodeMetricsReport' — Static code metrics
‘off’ | ‘on’

Static code metrics, specified as ‘on’ or ‘off’. Specify ‘on’ to include static code metrics in
the code generation report. For more information, see “Static code metrics”.
Example: ‘'GenerateCodeMetricsReport','on'’

Data Types: char

More About
• “Reports for Code Generation”
• “Generate a Code Generation Report”
• “Generate Code Generation Report After Build Process”

See Also
coder.report.close | coder.report.open



2 Alphabetical List

2-42

coder.report.open
Open existing HTML code generation report

Syntax

coder.report.open(model)

coder.report.open(subsystem)

Description

coder.report.open(model) opens a code generation report for the model. The build
folder for the model must be present in the current working folder.

coder.report.open(subsystem) opens a code generation report for the subsystem.
The build folder for the subsystem must be present in the current working folder.

Examples

Open code generation report for a model

After generating code for rtwdemo_counter, open a code generation report for the
model.

coder.report.open('rtwdemo_counter')

Open code generation report for a subsystem

Open a code generation report for the subsystem ‘Amplifier’ in model
‘rtwdemo_counter’.

coder.report.open('rtwdemo_counter/Amplifier')

Input Arguments

model — Model name
string



 coder.report.open

2-43

Model name specified as a string
Example: ‘rtwdemo_counter’

Data Types: char

subsystem — Subsystem name
string

Subsystem name specified as a string
Example: ‘rtwdemo_counter/Amplifier’

Data Types: char

More About
• “Reports for Code Generation”
• “Open Code Generation Report”

See Also
coder.report.close | coder.report.generate



2 Alphabetical List

2-44

findBuildArg
Search for a specific build argument in model build information

Syntax
[identifier, value] = findBuildArg(buildinfo, buildArgName)

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
buildArgName

A character array which specifies the name of the build argument that you want to
find.

Output Arguments
Build argument found in the model build information. The function returns the build
argument in two vectors.

Vector Description

identifier Name of the build argument that the function finds
value Value of the build argument

Description
The findBuildArg function searches for a build argument stored in the model build
information. If the build argument is present in the model build information, the function
returns the name and value.

More About
• “Customize Post-Code-Generation Build Processing”



 findBuildArg

2-45

See Also
getBuildArgs



2 Alphabetical List

2-46

findIncludeFiles
Find and add include (header) files to build information object

Syntax
findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
extPatterns (optional)

A cell array of character arrays that specify patterns of file name extensions for
which the function is to search. Each pattern

• Must start with *.
• Can include a combination of alphanumeric and underscore (_) characters

The default pattern is *.h.

Examples of valid patterns include
*.h

*.hpp

*.x*

Description

The findIncludeFiles function

• Searches for include files, based on specified file name extension patterns, in source
and include paths recorded in the model build information object

• Adds the files found, along with their full paths, to the build information object



 findIncludeFiles

2-47

• Deletes duplicate entries

Examples

Find include files with filename extension .h that are in build information object
myModelBuildInfo, and add the full paths for the files found to the object.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, {fullfile(pwd,...

'mycustomheaders')}, 'myheaders');

findIncludeFiles(myModelBuildInfo);

headerfiles = getIncludeFiles(myModelBuildInfo, true, false);

headerfiles

headerfiles = 

     'W:\work\mycustomheaders\myheader.h'

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludeFiles | packNGo | getIncludeFiles



2 Alphabetical List

2-48

getBuildArgs
Build arguments from model build information

Syntax
[identifiers, values] = getBuildArgs(buildinfo, includeGroupIDs, excludeGroupIDs)

includeGroupIDs and excludeGroupIDs are optional.

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
includeGroupIDs (optional)

A cell array which specifies group IDs of build arguments that you want the function
to return.

excludeGroupIDs (optional)
A cell array which specifies group IDs of build arguments that you do not want the
function to return.

Output Arguments
Build arguments stored in the model build information. The function returns the build
arguments in two vectors.

Vector Description

identifiers Names of the build arguments
values Values of the build arguments

Description
The getBuildArgs function returns build arguments stored in the model build
information. Using optional includeGroupIDs and excludeGroupIDs arguments,



 getBuildArgs

2-49

you can selectively include or exclude groups from the build arguments returned by the
function.

If you choose to specify excludeGroupIDs and omit includeGroupIDs, specify a null
string ('') for includeGroupIDs.

More About
• “Customize Post-Code-Generation Build Processing”

See Also
findBuildArg



2 Alphabetical List

2-50

getCompileFlags
Compiler options from model build information

Syntax
options = getCompileFlags(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments

buildinfo

Build information returned by RTW.BuildInfo.
includeGroups (optional)

A character array or cell array of character arrays that specifies groups of compiler
flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of compiler
flags you do not want the function to return.

Output Arguments

Compiler options stored in the model build information.

Description

The getCompileFlags function returns compiler options stored in the model build
information. Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.



 getCompileFlags

2-51

Examples

• Get the compiler options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

  'OPTS');

compflags=getCompileFlags(myModelBuildInfo);

compflags

compflags = 

    '-Zi -Wall'    '-O3'

• Get the compiler options stored with the group name Debug in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

  {'Debug' 'MemOpt'});

compflags=getCompileFlags(myModelBuildInfo, 'Debug');

compflags

compflags = 

    '-Zi -Wall'

• Get the compiler options stored in build information myModelBuildInfo, except
those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'}, ...

  {'Debug' 'MemOpt'});

compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');

compflags

compflags = 

    '-O3'

More About
• “Customize Post-Code-Generation Build Processing”



2 Alphabetical List

2-52

See Also
addCompileFlags | getDefines | getLinkFlags



 getDefines

2-53

getDefines
Preprocessor macro definitions from model build information

Syntax
[macrodefs, identifiers, values] = getDefines(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments

buildinfo

Build information returned by RTW.BuildInfo.
includeGroups (optional)

A character array or cell array of character arrays that specifies groups of macro
definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of macro
definitions you do not want the function to return.

Output Arguments

Preprocessor macro definitions stored in the model build information. The function
returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D prefix
identifiers Names of the macros
values Values assigned to the macros (anything specified to

the right of the first equals sign) ; the default is an
empty string ('')



2 Alphabetical List

2-54

Description

The getDefines function returns preprocessor macro definitions stored in the model
build information. When the function returns a definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the definition was
added to the build information

• Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

• Get the preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, ...

  {'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, 'OPTS');

[defs names values]=getDefines(myModelBuildInfo);

defs

defs = 

    '-DPROTO=first'   '-DDEBUG'   '-Dtest'   '-DPRODUCTION'

names

names = 

 

    'PROTO'

    'DEBUG'

    'test'

    'PRODUCTION'

values



 getDefines

2-55

values = 

    'first'

    ''

    ''

    ''

• Get the preprocessor macro definitions stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, ...

  {'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, ...

  {'Debug' 'Debug' 'Debug' 'Release'});

[defs names values]=getDefines(myModelBuildInfo, 'Debug');

defs

defs = 

    '-DPROTO=first'   '-DDEBUG'     '-Dtest'

• Get the preprocessor macro definitions stored in build information
myModelBuildInfo, except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo, ...

  {'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, ...

  {'Debug' 'Debug' 'Debug' 'Release'});

[defs names values]=getDefines(myModelBuildInfo, '', 'Debug');

defs

defs = 

    '-DPRODUCTION'

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addDefines | getCompileFlags | getLinkFlags



2 Alphabetical List

2-56

getFullFileList
List of files from model build information

Syntax
[fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.

Input Arguments

buildinfo

Build information returned by RTW.BuildInfo.
fcase (optional)

The string 'source', 'include', or 'nonbuild'. If the argument is omitted, the
function returns files from the model build information.

If You Specify... The Function...

'source' Returns source files from the model build information.
'include' Returns include files from the model build information.
'nonbuild' Returns nonbuild files from the model build

information.

Output Arguments

Fully-qualified file paths and file names for files stored in the model build information.

Note: It is not required to resolve the path of every file in the model build information,
because the makefile for the model build will resolve file locations based on source
paths and rules. Therefore, getFullFileList returns the path for each file only
if a path was explicitly associated with the file when it was added, or if you called



 getFullFileList

2-57

updateFilePathsAndExtensions to resolve file paths and extensions before calling
getFullFileList.

Description

The getFullFileList function returns the fully-qualified paths and names of all
files, or files of a selected type (source, include, or nonbuild), stored in the model build
information.

The packNGo function calls getFullFileList to return a list of files in the model build
information before processing files for packaging.

Examples

List the files stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

[fPathNames, names] = getFullFileList(myModelBuildInfo);

More About
• “Customize Post-Code-Generation Build Processing”



2 Alphabetical List

2-58

getIncludeFiles
Include files from model build information

Syntax
files = getIncludeFiles(buildinfo, concatenatePaths, replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

Note:  It is not required to resolve the path of every file in the model build
information, because the makefile for the model build will resolve file locations
based on source paths and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly associated with the file
when it was added, or if you called updateFilePathsAndExtensions to resolve file
paths and extensions before calling getIncludeFiles.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with the absolute
path string for your MATLAB installation folder.



 getIncludeFiles

2-59

If You Specify... The Function...

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
files you do not want the function to return.

Output Arguments

Names of include files stored in the model build information. The names include files you
added using the addIncludeFiles function and, if you called the packNGo function,
files packNGo found and added while packaging model code.

Description

The getIncludeFiles function returns the names of include files stored in the model
build information. Use the concatenatePaths and replaceMatlabroot arguments
to control whether the function includes paths and your MATLAB root definition in the
output it returns. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

• Get the include paths and filenames stored in build information myModelBuildInfo.
myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...

'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...

'/common/lib'}, {'etc' 'etc' 'shared'});

incfiles=getIncludeFiles(myModelBuildInfo, true, false);

incfiles



2 Alphabetical List

2-60

incfiles = 

    [1x22 char]    [1x36 char]    [1x21 char]

• Get the names of include files in group etc that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...

'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...

'/common/lib'}, {'etc' 'etc' 'shared'});

incfiles=getIncludeFiles(myModelBuildInfo, false, false,... 

'etc');

incfiles

incfiles = 

    'etc.h'     'etc_private.h'

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludeFiles | findIncludeFiles | getIncludePaths | getSourceFiles |
getSourcePaths | updateFilePathsAndExtensions



 getIncludePaths

2-61

getIncludePaths
Include paths from model build information

Syntax
files=getIncludePaths(buildinfo, replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments

buildinfo

Build information returned by RTW.BuildInfo.
replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with the
absolute path string for your MATLAB installation
folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
paths you do not want the function to return.

Output Arguments

Paths of include files stored in the model build information.



2 Alphabetical List

2-62

Description

The getIncludePaths function returns the names of include file paths stored in the
model build information. Use the replaceMatlabroot argument to control whether the
function includes your MATLAB root definition in the output it returns. Using optional
includeGroups and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

• Get the include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'... 

'/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});

incpaths=getIncludePaths(myModelBuildInfo, false);

incpaths

incpaths = 

    '\etc\proj\etclib'   [1x22 char]    '\common\lib'

• Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...

'/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});

incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');

incpaths

incpaths = 

    '\common\lib''



 getIncludePaths

2-63

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addIncludePaths | getIncludeFiles | getSourceFiles | getSourcePaths



2 Alphabetical List

2-64

getLinkFlags
Link options from model build information

Syntax
options=getLinkFlags(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
includeGroups (optional)

A character array or cell array that specifies groups of linker flags you want the
function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker flags you do not want
the function to return. To exclude groups and not include specific groups, specify an
empty cell array ('') for includeGroups.

Output Arguments

Linker options stored in the model build information.

Description

The getLinkFlags function returns linker options stored in the model build
information. Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.



 getLinkFlags

2-65

Examples

• Get the linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, 'OPTS');

linkflags=getLinkFlags(myModelBuildInfo);

linkflags

linkflags = 

    '-MD -Gy'    '-T'

• Get the linker options stored with the group name Debug in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

  {'Debug' 'MemOpt'});

linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});

linkflags

linkflags = 

    '-MD -Gy'

• Get the linker options stored in build information myModelBuildInfo, except those
with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'}, ...

  {'Debug' 'MemOpt'});

linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});

linkflags

linkflags = 

    '-T'

More About
• “Customize Post-Code-Generation Build Processing”



2 Alphabetical List

2-66

See Also
addLinkFlags | getCompileFlags | getDefines



 getNonBuildFiles

2-67

getNonBuildFiles
Nonbuild-related files from model build information

Syntax
files=getNonBuildFiles(buildinfo, concatenatePaths, replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

Note:  It is not required to resolve the path of every file in the model build
information, because the makefile for the model build will resolve file locations
based on source paths and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly associated with the file
when it was added.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with the absolute
path string for your MATLAB installation folder.



2 Alphabetical List

2-68

If You Specify... The Function...

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of nonbuild
files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of nonbuild
files you do not want the function to return.

Output Arguments

Names of nonbuild files stored in the model build information.

Description

The getNonBuildFiles function returns the names of nonbuild-related files, such as
DLL files required for a final executable, or a README file, stored in the model build
information. Use the concatenatePaths and replaceMatlabroot arguments to
control whether the function includes paths and your MATLAB root definition in the
output it returns. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of nonbuild files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

Get the nonbuild filenames stored in build information myModelBuildInfo.
myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, {'readme.txt' 'myutility1.dll'...

'myutility2.dll'});

nonbuildfiles=getNonBuildFiles(myModelBuildInfo, false, false);

nonbuildfiles

nonbuildfiles = 



 getNonBuildFiles

2-69

    'readme.txt'    'myutility1.dll'    'myutility2.dll'

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addNonBuildFiles



2 Alphabetical List

2-70

getSourceFiles
Source files from model build information

Syntax
srcfiles=getSourceFiles(buildinfo, concatenatePaths, replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments
buildinfo

Build information returned by RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

Note: It is not required to resolve the path of every file in the model build
information, because the makefile for the model build will resolve file locations
based on source paths and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly associated with the file
when it was added, or if you called updateFilePathsAndExtensions to resolve file
paths and extensions before calling getSourceFiles.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces path tokens, such as $(MATLAB_ROOT) and
$(START_DIR), with the absolute path string.



 getSourceFiles

2-71

If You Specify... The Function...

false Does not replace path tokens with the absolute path
string.

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of source files
you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of source files
you do not want the function to return.

Output Arguments

Names of source files stored in the model build information.

Description

The getSourceFiles function returns the names of source files stored in the model
build information. Use the concatenatePaths and replaceMatlabroot arguments to
control whether the function includes paths and expansions of path tokens in the output
it returns. Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

• Get the source paths and filenames stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo,...

{'test1.c' 'test2.c' 'driver.c'}, '',...

{'Tests' 'Tests' 'Drivers'});

srcfiles=getSourceFiles(myModelBuildInfo, false, false);

srcfiles



2 Alphabetical List

2-72

srcfiles = 

    'test1.c'   'test2.c'   'driver.c'

• Get the names of source files in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, {'test1.c' 'test2.c'...

'driver.c'}, {'/proj/test1' '/proj/test2'...

'/drivers/src'}, {'tests', 'tests', 'drivers'});

incfiles=getSourceFiles(myModelBuildInfo, false, false,... 

'tests');

incfiles

incfiles = 

    'test1.c'   'test2.c'

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addSourceFiles | getIncludeFiles | getIncludePaths | getSourcePaths |
updateFilePathsAndExtensions



 getSourcePaths

2-73

getSourcePaths
Source paths from model build information

Syntax
files=getSourcePaths(buildinfo, replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments

buildinfo

Build information returned by RTW.BuildInfo.
replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with the absolute
path string for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
paths you do not want the function to return.

Output Arguments

Paths of source files stored in the model build information.



2 Alphabetical List

2-74

Description

The getSourcePaths function returns the names of source file paths stored in the
model build information. Use the replaceMatlabroot argument to control whether the
function includes your MATLAB root definition in the output it returns. Using optional
includeGroups and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null string
('') for includeGroups.

Examples

• Get the source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, {'/proj/test1'...

'/proj/test2' '/drivers/src'}, {'tests' 'tests'...

'drivers'});

srcpaths=getSourcePaths(myModelBuildInfo, false);

srcpaths

srcpaths = 

   '\proj\test1'    '\proj\test2'      '\drivers\src'

• Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, {'/proj/test1'... 

'/proj/test2' '/drivers/src'}, {'tests' 'tests'... 

'drivers'});

srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');

srcpaths

srcpaths = 

     '\proj\test1'    '\proj\test2' 

• Get a path stored in build information myModelBuildInfo. First get the path
without replacing $(MATLAB_ROOT) with an absolute path, then get it with



 getSourcePaths

2-75

replacement. The MATLAB root folder in this case is \\myserver\myworkspace
\matlab.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...

 'rtw', 'c', 'src'));

srcpaths=getSourcePaths(myModelBuildInfo, false);

srcpaths{:}

ans =

$(MATLAB_ROOT)\rtw\c\src

srcpaths=getSourcePaths(myModelBuildInfo, true);

srcpaths{:}

ans = 

\\myserver\myworkspace\matlab\rtw\c\src

More About
• “Customize Post-Code-Generation Build Processing”

See Also
addSourcePaths | getIncludeFiles | getIncludePaths | getSourceFiles



2 Alphabetical List

2-76

model_initialize
Initialization entry point in generated code for Simulink model

Syntax
void model_initialize(void)

Calling Interfaces

The calling interface generated for this function differs depending on the value of the
model parameter “Code interface packaging”:

• C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

• Nonreusable function (default for C language) — Generated function passes
(void). Model data structures are statically allocated, global, and accessed directly
in the model code.

• Reusable function — Generated function passes the real-time model data
structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function.
They can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.

For a GRT-based model, the generated model.c source file contains an allocation
function that dynamically allocates model data for each instance of the model. For an
ERT-based model, you can use the Use dynamic memory allocation for model
initialization option to control whether an allocation function is generated.

Note: If you have an Embedded Coder license, for Nonreusable function code
interface packaging, you can use the Configure Model Functions button on the
Interface pane of the Configuration Parameters dialog box. For more information, see
“Function Prototype Control” in the Embedded Coder documentation.



 model_initialize

2-77

Description

The generated model_initialize function contains the model initialization code for a
Simulink model and should be called once at the beginning of model execution.

More About
• “Entry-Point Functions and Scheduling”

See Also
model_step | model_terminate



2 Alphabetical List

2-78

model_step
Step routine entry point in generated code for Simulink model

Syntax
void model_step(void)

void model_stepN(void)

Calling Interfaces

The model_step default function prototype varies depending on the “Tasking mode
for periodic sample times” (SolverMode) parameter specified for the model:

Tasking Mode Function Prototype

SingleTasking

(single-rate or multirate)
void model_step(void);

MultiTasking

(multirate)
void model_stepN (void);

(N is a task identifier)

The calling interface generated for this function also differs depending on the value of the
model parameter “Code interface packaging”:

• C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

• Nonreusable function (default for C language) — Generated function passes
(void). Model data structures are statically allocated, global, and accessed directly
in the model code.

• Reusable function — Generated function passes the real-time model data
structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function.
They can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.



 model_step

2-79

Note: If you have an Embedded Coder license:

• For Nonreusable function code interface packaging, you can use the Configure
Model Functions button on the Interface pane of the Configuration Parameters

dialog box. For more information, see “Function Prototype Control” in the Embedded
Coder documentation.

• For C++ class code interface packaging, you can use the Configure C++ Class
Interface button and related controls on the Interface pane of the Configuration
Parameters dialog box. For more information, see “C++ Class Interface Control” in the
Embedded Coder documentation.

Description

The generated model_step function contains the output and update code for the blocks
in a Simulink model. The model_step function computes the current value of the blocks.
If logging is enabled, model_step updates logging variables. If the model's stop time is
finite, model_step signals the end of execution when the current time equals the stop
time.

Under the following conditions, model_step does not check the current time against the
stop time:

• The model's stop time is set to inf.
• Logging is disabled.
• The Terminate function required option is not selected.

Therefore, if one or more of these conditions are true, the program runs indefinitely.

For a GRT or ERT-based model, the software generates a model_step function when
the Single output/update function configuration option is selected (the default) in the
Configuration Parameters dialog box.

model_step is designed to be called at interrupt level from rt_OneStep, which is
assumed to be invoked as a timer ISR. rt_OneStep calls model_step to execute
processing for one clock period of the model. See “rt_OneStep and Scheduling
Considerations” in the Embedded Coder documentation for a description of how calls to
model_step are generated and scheduled.



2 Alphabetical List

2-80

Note: If the Single output/update function configuration option is not selected, the
software generates the following model entry point functions in place of model_step:

• model_output: Contains the output code for the blocks in the model

• model_update: Contains the update code for the blocks in the model

More About
• “Entry-Point Functions and Scheduling”

See Also
model_initialize | model_terminate



 model_terminate

2-81

model_terminate
Termination entry point in generated code for Simulink model

Syntax
void model_terminate(void)

Calling Interfaces

The calling interface generated for this function also differs depending on the value of the
model parameter “Code interface packaging”:

• C++ class (default for C++ language) — Generated function is encapsulated into a C
++ class method. Required model data is encapsulated into C++ class attributes.

• Nonreusable function (default for C language) — Generated function passes
(void). Model data structures are statically allocated, global, and accessed directly
in the model code.

• Reusable function — Generated function passes the real-time model data
structure, by reference, as an input argument. The real-time model data structure is
exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the function.
They can be included in the real-time model data structure, passed as individual
arguments, or passed as references to an input structure and an output structure.

Description

The generated model_terminate function contains the termination code for a Simulink
model and should be called as part of system shutdown.

When model_terminate is called, blocks that have a terminate function execute their
terminate code. If logging is enabled, model_terminate ends data logging.

The model_terminate function should be called only once.



2 Alphabetical List

2-82

For an ERT-based model, the Embedded Coder software generates the
model_terminate function for a model when the Terminate function required
configuration option is selected (the default) in the Configuration Parameters dialog box.
If your application runs indefinitely, you do not need the model_terminate function. To
suppress the function, clear the Terminate function required configuration option in
the Configuration Parameters dialog box.

More About
• “Entry-Point Functions and Scheduling”

See Also
model_initialize | model_step



 packNGo

2-83

packNGo

Package model code in zip file for relocation

Syntax

packNGo(buildinfo, propVals...)

propVals is optional.

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
propVals (optional)

A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package model code files in a zip file as a
single, flat folder.

'packType' 'flat' (default)

Package model code files hierarchically in
a primary zip file.

The value of the 'nestedZipFiles'
property determines whether the primary
zip file contains secondary zip files or
folders.

'packType' 'hierarchical'

Create a primary zip file that contains
three secondary zip files:

• mlrFiles.zip — files in your
matlabroot folder tree

• sDirFiles.zip — files in and under
your build folder

'nestedZipFiles' true (default)



2 Alphabetical List

2-84

To... Specify Property... With Value...

• otherFiles.zip — required files not
in the matlabroot or start folder
trees

Paths for files in the secondary zip files
are relative to the root folder of the
primary zip file.
Create a primary zip file that contains
folders, for example, your build folder and
matlabroot.

'nestedZipFiles' false

Specify a file name for the primary zip file. 'fileName' 'string'

Default:'model.zip'
If you omit the .zip file
extension, the function
adds it for you.

Include only the minimal header files
required to build the code in the zip file.

'minimalHeaders' true (default)

Include header files found on the include
path in the zip file.

'minimalHeaders' false

Include the html folder for your code
generation report.

'includeReport' true (default is false)

Direct packNGo not to error out on parse
errors.

'ignoreParseError' true (default is false)

Direct packNGo not to error out if files are
missing.

'ignoreFileMissing' true (default is false)

Description

The packNGo function packages the following code files in a compressed zip file so you
can relocate, unpack, and rebuild them in another development environment:

• Source files (for example, .c and .cpp files)
• Header files (for example, .h and .hpp files)



 packNGo

2-85

• Nonbuild-related files (for example, .dll files required for a final executable and
.txt informational files)

• MAT-file that contains the model build information object (.mat file)

You might use this function to relocate files so they can be recompiled for a specific target
environment or rebuilt in a development environment in which MATLAB is not installed.

By default, the function packages the files as a flat folder structure in a zip file named
model.zip. You can tailor the output by specifying property name and value pairs as
explained above.

After relocating the zip file, use a standard zip utility to unpack the compressed file.

Note: The packNGo function potentially can modify the build information passed in
the first packNGo argument. As part of packaging model code, packNGo might find
additional files from source and include paths recorded in the model's build information
and add them to the build information.

Examples

• Package the code files for model zingbit in the file zingbit.zip as a flat folder
structure.
set_param('zingbit','PostCodeGenCommand','packNGo(buildInfo);');

Then, rebuild the model.
• Package the code files for model zingbit in the file portzingbit.zip and maintain

the relative file hierarchy.

cd zingbit_grt_rtw;

load buildInfo.mat

packNGo(buildInfo, {'packType', 'hierarchical', ...

 'fileName', 'portzingbit'});

Alternatives

You can configure model code packaging by selecting the “Package code and artifacts”
option on the Code Generation pane of the Configuration Parameters dialog box.



2 Alphabetical List

2-86

More About
• “Customize Post-Code-Generation Build Processing”
• “Relocate Code to Another Development Environment”
• “packNGo Function Limitations”



 rsimgetrtp

2-87

rsimgetrtp
Global model parameter structure

Syntax

parameter_structure = rsimgetrtp('model')

parameter_structure =

rsimgetrtp('model','AddTunableParamInfo','value')

Description

parameter_structure = rsimgetrtp('model') forces a block update diagram
action for model, a model for which you are running rapid simulations, and returns the
global parameter structure for that model.

parameter_structure =

rsimgetrtp('model','AddTunableParamInfo','value') includes tunable
parameter information in the parameter structure if value is 'on'. The function omits
tunable parameters if value is 'off'. To use AddTunableParamInfo, you must enable
inline parameters.

The model parameter structure contains the following fields:

Field Description

modelChecksum A four-element vector that encodes the structure. The
Simulink Coder software uses the checksum to check
whether the structure has changed since the RSim
executable was generated. If you delete or add a block,
and then generate a new version of the structure, the
new checksum will not match the original checksum.
The RSim executable detects this incompatibility in
model parameter structures and exits to avoid returning
incorrect simulation results. If the structure changes, you
must regenerate code for the model.

parameters A structure that defines model global parameters.



2 Alphabetical List

2-88

The parameters substructure includes the following fields:

Field Description

dataTypeName Name of the parameter data type, for example, double
dataTypeID An internal data type identifier
complex Value 1 if parameter values are complex and 0 if real
dtTransIdx Internal use only
values Vector of parameter values

If you set 'AddTunableParamInfo' to 'on', the function creates and then deletes
model.rtw from your current working folder and includes a map substructure that has
the following fields:

Field Description

Identifier Parameter name
ValueIndicies Vector of indices to parameter values
Dimensions Vector indicating parameter dimensions

Examples

Return global parameter structure for model rtwdemo_rsimtf to param_struct:

rtwdemo_rsimtf

param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct = 

    modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009 

2.3064e+009]

       parameters: [1x1 struct]

More About
• “Create a MAT-File That Includes a Model Parameter Structure”
• “Update a Block Diagram”
• “Inline parameters”



 rsimgetrtp

2-89

• “Block Creation”
• “Tune Parameters”

See Also
rsimsetrtpparam



2 Alphabetical List

2-90

rsimsetrtpparam
Set parameters of rtP model parameter structure

Syntax

rtp = rsimsetrtpparam(rtp,idx)

rtp = rsimsetrtpparam(rtp,'paramName',paramValue)

rtP = rsimsetrtpparam(rtP,idx,'paramName',paramValue)

Description

rtp = rsimsetrtpparam(rtp,idx) expands the rtP structure to have idx sets
of parameters. The rsimsetrtpparam utility defines the values of an existing rtP
parameter structure.

rtp = rsimsetrtpparam(rtp,'paramName',paramValue) takes an rtP structure
with tunable parameter information and sets the values associated with 'paramName' to
be paramValue if possible. There can be more than one name-value pair.

rtP = rsimsetrtpparam(rtP,idx,'paramName',paramValue) takes an rtP
structure with tunable parameter information and sets the values associated with
'paramName' to be paramValue in the idxth parameter set. There can be more than one
name-value pair. If the rtP structure does not have idx parameter sets, the first set is
copied and appended until there are idx parameter sets. Subsequently, the idxth set is
changed.

Input Arguments

rtP

A parameter structure that contains the sets of parameter names and their respective
values.

idx

An index used to indicate the number of parameter sets in the rtP structure.



 rsimsetrtpparam

2-91

paramValue

The value of the rtP parameter paramName.

paramName

The name of the parameter set to add to the rtP structure.

Output Arguments

rtP

An expandedrtP parameter structure that contains idx additional parameter sets
defined by the rsimsetrtpparam function call.

Definitions

The rtP structure should match the format of the structure returned by
rsimsetrtp(modelName).

Examples

1 Expand the number of parameter sets in the rtp structure to 10.

rtp = rsimsetrtpparam(rtp,10);

2 Add three parameter sets to the parameter structure rtp.
rtp = rsimsetrtpparam(rtp,idx,'X1',iX1,'X2',iX2,'Num',iNum);

See Also
rsimgetrtp



2 Alphabetical List

2-92

rtw_precompile_libs
Build libraries within model without building model

Syntax

rtw_precompile_libs('model', build_spec)

Description

rtw_precompile_libs('model', build_spec) builds libraries within model,
according to the build_spec arguments, and places the libraries in a precompiled
folder.

Input Arguments

model

Character array. Name of the model containing the libraries that you want to build.

build_spec

Structure of field and value pairs that define a build specification; fields except
rtwmakecfgDirs are optional:

Field Value

rtwmakecfgDirs Cell array of strings that names the folders containing
rtwmakecfg files for libraries that you want to precompile.
Uses the Name and Location elements of makeInfo.library,
as returned by the rtwmakecfg function, to specify
name and location of precompiled libraries. If you use the
TargetPreCompLibLocation parameter to specify the library
folder, it overrides the makeInfo.library.Location setting.

The specified model must contain blocks that use precompiled
libraries that the rtwmakecfg files specify. The template



 rtw_precompile_libs

2-93

Field Value
makefile (TMF)-to-makefile conversion generates the library
rules only if the conversion needs the libraries.

libSuffix (optional) String that specifies the suffix, including the file type
extension, to append to the name of each library (for example,
.a or _vc.lib). The string must include a period (.). Set
the suffix with either this field or the TargetLibSuffix
parameter. If you specify a suffix with both mechanisms, the
TargetLibSuffix setting overrides the setting of this field.

intOnlyBuild

(optional)
Boolean flag. When set to true, indicates the function optimizes
the libraries so that they compile from integer code only. Applies
to ERT-based targets only.

makeOpts (optional) String that specifies an option to include in the rtwMake
command line.

addLibs (optional) Cell array of structures that specify the libraries to build that
an rtwmakecfg function does not specify. Define each structure
with two fields that are character arrays:

• libName — name of the library without a suffix
• libLoc — location for the precompiled library

The TMF can specify other libraries and how to build them. Use
this field if you must precompile libraries.

Examples

Build the libraries in my_model without building my_model:
% Specify the library suffix

if isunix

   suffix = '.a';

else

   suffix = '_vc.lib';

end

set_param(my_model, 'TargetLibSuffix', suffix);

% Set the prcompiled library folder

set_param(my_model, 'TargetPreCompLibLocation', fullfile(pwd,'lib'));

% Define a build specification that specifies the location of the files to compile.

build_spec = [];

build_spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};



2 Alphabetical List

2-94

% Build the libraries in 'my_model'

rtw_precompile_libs(my_model, build_spec);

More About
• “Precompile S-Function Libraries”
• “Recompile Precompiled Libraries”



 rtwbuild

2-95

rtwbuild
Initiate build process

Syntax

rtwbuild(model)

rtwbuild(model,Name,Value )

rtwbuild(subsystem)

rtwbuild(subsystem,'Mode','ExportFunctionCalls')

blockHandle = rtwbuild(subsystem,'Mode','ExportFunctionCalls')

rtwbuild(subsystem,'Mode','ExportFunctionCalls,

'ExportFunctionInitializeFunctionName', fcnname)

Description

rtwbuild(model) generates code from model based on current model configuration
parameter settings. If model is not already loaded into the MATLAB environment,
rtwbuild loads it before generating code.

If you clear the Generate code only model configuration parameter, the function
generates code and builds an executable image.

rtwbuild(model,Name,Value ) uses additional options specified by one or more
Name,Value pair arguments.

rtwbuild(subsystem) generates code from subsystem based on current model
configuration parameter settings. Before initiating the build, open (or load) the parent
model.

If you clear the Generate code only model configuration parameter, the function
generates code and builds an executable image.

rtwbuild(subsystem,'Mode','ExportFunctionCalls'), if you have an Embedded
Coder software license, generates code from subsystem that includes function calls that
you can export to external application code.



2 Alphabetical List

2-96

blockHandle = rtwbuild(subsystem,'Mode','ExportFunctionCalls'), if
you have an Embedded Coder license and Code Generation > Verification > Create
block is set to SIL, returns the handle to a SIL block created for code generated from the
specified subsystem. You can then use the SIL block for SIL verification testing.

rtwbuild(subsystem,'Mode','ExportFunctionCalls,

'ExportFunctionInitializeFunctionName', fcnname) names the exported
initialization function, specified as a string, for the specified subsystem.

Examples

Generate Code and Build Executable Image for Model

Generate C code for model rtwdemo_rtwintro.

rtwbuild('rtwdemo_rtwintro')

For the GRT target, the coder generates the following code files and places them in
folders rtwdemo_rtwintro_grt_rtw and slprj/grt/_sharedutils.

Model Files Shared Files Interface
Files

Other Files

rtwdemo_rtwintro.c

rtwdemo_rtwintro.h

rtwdemo_rtwintro_private.h

rtwdemo_rtwintrotypes.h

rtGetInf.c

rtGetInf.h

rtGetNaN.c

rtGetNaN.h

rt_nonfinite.c

rt_nonfinite.h

rtwtypes.h

multiword_types.h

builtin_typeid_types.h

rtmodel.hrt_logging.c

If the following model configuration parameters settings apply, the coder generates
additional results.

Parameter Setting Results

Code Generation > Generate code only
pane is cleared

Executable image
rtwdemo_rtwintro.exe



 rtwbuild

2-97

Parameter Setting Results

Code Generation > Report > Create
code generation report is selected

Report appears, providing information and
links to generated code files, subsystem
and code interface reports, entry-point
functions, inports, outports, interface
parameters, and data stores

Force Top Model Build

Generate code and build an executable image for rtwdemo_mdlreftop, which refers to
model rtwdemo_mdlrefbot, regardless of model checksums and parameter settings.

rtwbuild('rtwdemo_mdlreftop','ForceTopModelBuild',true)

Display Error Messages in Diagnostic Viewer

Introduce an error to model rtwdemo_mdlreftop and save the model as
rtwdemo_mdlreftop_witherr. Display build error messages in the Diagnostic Viewer
and in the Command Window while generating code and building an executable image
for model rtwdemo_mdlreftop_witherr.

rtwbuild('rtwdemo_mdlreftop_witherr','OkayToPushNags',true)

Generate Code and Build Executable Image for Subsystem

Generate C code for subsystem Amplifiler in model rtwdemo_rtwintro.

rtwbuild('rtwdemo_rtwintro/Amplifier')

For the GRT target, the coder generates the following code files and places them in
folders Amplifier_grt_rtw and slprj/grt/_sharedutils.

Model Files Shared Files Interface
Files

Other Files

Amplifier.c

Amplifier.h

Amplifier_private.h

Aplifier_types.h

rtGetInf.c

rtGetInf.h

rtGetNaN.c

rtGetNaN.h

rt_nonfinite.c

rt_nonfinite.h

rtwtypes.h

rtmodel.h rt_logging.c



2 Alphabetical List

2-98

Model Files Shared Files Interface
Files

Other Files

multiword_types.h

builtin_typeid_types.h

If the following model configuration parameters settings apply, the coder generates
additional results.

Parameter Setting Results

Code Generation > Generate code only
pane is cleared

Executable image Amplifier.exe

Code Generation > Report > Create
code generation report is selected

Report appears, providing information and
links to generated code files, subsystem
and code interface reports, entry-point
functions, inports, outports, interface
parameters, and data stores

Build Subsystem for Exporting Code to External Application

Build an executable image from a function-call subsystem to export the image to external
application code.

rtwdemo_exporting_functions

rtwbuild('rtwdemo_exporting_functions/rtwdemo_subsystem','Mode','ExportFunctionCalls')

The executable image rtwdemo_subsystem.exe appears in your working folder.

Create SIL Block for Verification

From a function-call subsystem, create a SIL block that you can use to test the code
generated from a model.

Open subsystem rtwdemo_subsystem in model rtwdemo_exporting_functions and
set Code Generation > Verification > Create block to SIL.

Create the SIL block.
mysilblockhandle = rtwbuild('rtwdemo_exporting_functions/rtwdemo_subsystem',...

'Mode','ExportFunctionCalls')

The coder generates a SIL block for the generated subsystem code. You can add the block
to an environment or test harness model that supplies test vectors or stimulus input. You



 rtwbuild

2-99

can then run simulations that perform SIL tests and verify that the generated code in the
SIL block produces the same result as the original subsystem.

Name Exported Initialization Function

Name the initialization function generated when building an executable image from a
function-call subsystem.

rtwdemo_exporting_functions

rtwbuild('rtwdemo_exporting_functions/rtwdemo_subsystem',...

'Mode','ExportFunctionCalls','ExportFunctionInitializeFunctionName', 'subsysinit')

The initialization function name subsysinit appears in
rtwdemo_subsystem_ert_rtw/ert_main.c.

Input Arguments

model — Model for which to generate code or build an executable image
handle | name

Model for which to generate code or build an executable image, specified as a handle or
string representing the model name.
Example: 'rtwdemo_exporting_functions'

subsystem — Subsystem for which to generate code or build executable image
name

Subsystem for which to generate code or build an executable image, specified as a string
representing the subsystem name or full block path.
Example: 'rtwdemo_exporting_functions/rtwdemo_subsystem'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: rtwbuild('rtwdemo_mdlreftop','ForceTopModelBuild',true)



2 Alphabetical List

2-100

'ForceTopModelBuild' — Force regeneration of top model code
false (default) | true

Force regeneration of top model code, specified as true or false.

If You Want to... Specify...

Force the coder to regenerate code for the top model of
a system that includes referenced models

true

Let the coder determine whether to regenerate top
model code based on model and model parameter
changes

false

Consider forcing regeneration of code for a top model if you make changes associated
with external or custom code, such as code for a custom target. For example, you should
set ForceTopModelBuild to true if you change

• TLC code
• S-function source code, including rtwmakecfg.m files
• Integrated custom code

Alternatively, you can force regeneration of top model code by deleting code generation
folders, such as slprj or the generated model code folder.

'OkayToPushNags' — Display build error messages in Diagnostic Viewer
false (default) | true

Display build error messages in Diagnostic Viewer, specified as true or false.

If You Want to... Specify...

Display build error messages in the Diagnostic Viewer
and in the Command Window

true

Display build error messages in the Command Window
only

false

Output Arguments

blockHandle — Handle to SIL block created for generated subsystem code
handle



 rtwbuild

2-101

Handle to SIL block created for generated subsystem code. Returned only if both of the
following conditions apply:

• You are licensed to use Embedded Coder software.
• The Create block parameter on the Code Generation > Verification pane of the

Configuration Parameters dialog box is set to SIL.

More About

Tips

You can initiate code generation and the build process by using the following options:

• Clear the Generate code only option on the Code Generation pane of the
Configuration Parameters dialog box and click Build.

• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the slbuild command from the MATLAB command line.

• “Initiate the Build Process”
• “Program Builds”
• “Control Regeneration of Top Model Code”
• “Export Function-Call Subsystems”
• “Software-in-the-Loop (SIL) Simulation”

See Also
slbuild



2 Alphabetical List

2-102

RTW.getBuildDir
Build folder information for model

Syntax

RTW.getBuildDir(model)

folderstruct = RTW.getBuildDir(model)

Description

RTW.getBuildDir(model) displays build folder information for model.

If the model is closed, the function opens and then closes the model, leaving it in its
original state. If the model is large and closed, the RTW.getBuildDir function can take
significantly longer to execute.

folderstruct = RTW.getBuildDir(model) returns a structure containing build
folder information.

You can use this function in automated scripts to determine the build folder in which the
generated code for a model is placed.

Note: This function can return build folder information for protected models.

Examples

Display Build Folder Information

>> RTW.getBuildDir('sldemo_fuelsys')

ans = 

              BuildDirectory: 'C:\work\modelref\sldemo_fuelsys_ert_rtw'

                 CacheFolder: 'C:\work\modelref'

               CodeGenFolder: 'C:\work\modelref'



 RTW.getBuildDir

2-103

            RelativeBuildDir: 'sldemo_fuelsys_ert_rtw'

              BuildDirSuffix: '_ert_rtw'

  ModelRefRelativeRootSimDir: 'slprj\sim'

  ModelRefRelativeRootTgtDir: 'slprj\ert'

    ModelRefRelativeBuildDir: 'slprj\ert\sldemo_fuelsys'

      ModelRefRelativeSimDir: 'slprj\sim\sldemo_fuelsys'

      ModelRefRelativeHdlDir: 'slprj\hdl\sldemo_fuelsys'

           ModelRefDirSuffix: ''

           SharedUtilsSimDir: 'slprj\sim\_sharedutils'

           SharedUtilsTgtDir: 'slprj\ert\_sharedutils'

Get Build Folder Information

Return build folder information for the model MyModel.

>> folderstruct = RTW.getBuildDir('MyModel')

folderstruct = 

              BuildDirectory: 'H:\MyModel_ert_rtw'

                 CacheFolder: 'H:\'

               CodeGenFolder: 'H:\'

            RelativeBuildDir: 'MyModel_ert_rtw'

              BuildDirSuffix: '_ert_rtw'

  ModelRefRelativeRootSimDir: 'slprj\sim'

  ModelRefRelativeRootTgtDir: 'slprj\ert'

    ModelRefRelativeBuildDir: 'slprj\ert\MyModel'

      ModelRefRelativeSimDir: 'slprj\sim\MyModel'

      ModelRefRelativeHdlDir: 'slprj\hdl\MyModel'

           ModelRefDirSuffix: ''

           SharedUtilsSimDir: 'slprj\sim\_sharedutils'

           SharedUtilsTgtDir: 'slprj\ert\_sharedutils'

Input Arguments

model — Input data
character string

Character string specifying the name of a Simulink model.
Example: 'sldemo_fuelsys'

Data Types: char



2 Alphabetical List

2-104

Output Arguments
folderstruct — Output data
structure

Structure containing the following:

Field Description

BuildDirectory String specifying fully qualified path to build folder for model.
CacheFolder String specifying root folder in which to place model build

artifacts used for simulation.
CodeGenFolder String specifying root folder in which to place Simulink Coder™

code generation files.
RelativeBuildDir String specifying build folder relative to the current working

folder (pwd).
BuildDirSuffix String specifying suffix appended to model name to create build

folder.
ModelRefRelativeRootSimDir String specifying the relative root folder for the model reference

target simulation folder.
ModelRefRelativeRootTgtDir String specifying the relative root folder for the model reference

target build folder.
ModelRefRelativeBuildDir String specifying model reference target build folder relative to

current working folder (pwd).
ModelRefRelativeSimDir String specifying model reference target simulation folder

relative to current working folder (pwd).
ModelRefRelativeHdlDir String specifying model reference target HDL folder relative to

current working folder (pwd).
ModelRefDirSuffix String specifying suffix appended to system target file name to

create model reference build folder.
SharedUtilsSimDir String specifying the shared utility folder for simulation.
SharedUtilsTgtDir String specifying the shared utility folder for code generation.

More About
• “Working Folder”



 RTW.getBuildDir

2-105

• “Folders Used During the Build Process”
• “Control the Location for Generated Files”

See Also
rtwbuild



2 Alphabetical List

2-106

rtwrebuild
Rebuild generated code

Syntax

rtwrebuild()

rtwrebuild('model')

rtwrebuild('path')

Description

rtwrebuild() recompiles generated code files you modified by invoking the makefile
generated during the previous build. If you omit the input arguments, the current
working folder must be the build folder of the model (not the model location).

Use rtwrebuild('model') if your current working folder is one level above the build
folder of the model (pwd when you initiated the Simulink Coder build).

Use rtwrebuild('path') to specify the path to the build folder of the model.

If your model includes referenced models, the Simulink Coder software builds the
referenced models recursively before rebuilding the top model.

Input Arguments

model String specifying the model name.
path String specifying the fully qualified path to the build

folder for the model.

Examples

Rebuild generated code for a model located in the current working folder (one level above
its build folder):



 rtwrebuild

2-107

rtwrebuild('mymodel')

Rebuild generated code for a model by specifying a path to its build folder:
rtwrebuild(fullfile('C:','work','mymodel_grt_rtw'))

More About
• “Rebuild a Model”



2 Alphabetical List

2-108

rtwreport

Create generated code report for model with Simulink Report Generator

Syntax

rtwreport(model)

rtwreport(model, folder)

Description

rtwreport(model) creates a report of code generation information for a model. Before
creating the report, the function loads the model and generates code. The Simulink Coder
software names the report codegen.html. It places the file in your current folder. The
report includes:

• Snapshots of the model, including subsystems.
• Block execution order list.
• Code generation summary with a list of generated code files, configuration settings, a

subsystem map, and a traceability report.
• Full listings of generated code that reside in the build folder.

rtwreport(model, folder) specifies the build folder, model_target_rtw. The
Simulink code generation folder, slprj, must reside in the parent folder of folder. If the
software cannot find the folder, an error occurs and code is not generated.

Examples

Create Report Documenting Generated Code

Create a report for model rtwdemo_secondOrderSystem:

rtwreport('rtwdemo_secondOrderSystem');



 rtwreport

2-109

Create Report Specifying Build Folder

Create a report for model rtwdemo_secondOrderSystem using build folder,
rtwdemo_secondOrderSystem_grt_rtw:

rtwreport('rtwdemo_secondOrderSystem', 'rtwdemo_secondOrderSystem_grt_rtw');

Input Arguments

model — Model name
string

Model name for which the report is generated, specified as a string.
Example: 'rtwdemo_secondOrderSystem'

Data Types: char

folder — Build folder name
string

Build folder name, specified as a string. When you have multiple build folders, include
a folder name. For example, if you have multiple builds using different targets, such as
GRT and ERT.
Example: 'rtwdemo_secondOrderSystem_grt_rtw'

Data Types: char

More About
• “Report Explorer”
• “Code Generation Summary”

Related Examples
• “Document Generated Code with Simulink Report Generator”
• “Import Generated Code”



2 Alphabetical List

2-110

rtwtrace

Trace a block to generated code in HTML code generation report

Syntax

rtwtrace('blockpath')

Description

rtwtrace('blockpath') opens an HTML code generation report that displays
contents of the source code file, and highlights the line of code corresponding to the
specified block.

Before calling rtwtrace, make sure:

• You select an ERT-based model and enabled model to code navigation.

To do this, on the Configuration Parameters dialog box, select the Code Generation
> Report pane, and select the Model-to-code parameter.

• You generate code for the model using the Embedded Coder software.
• You have the build folder under the current working folder; otherwise, rtwtrace may

produce an error.

Examples

Display Generated Code for a Block

Display the generated code for block Out1 in the model rtwdemo_comments in HTML
code generation report:

rtwtrace('rtwdemo_comments/Out1')



 rtwtrace

2-111

Input Arguments

blockpath — block path
string

blockpath is a string enclosed in quotes specifying the full Simulink block path, for
example, 'model_name/block_name'.

Example: 'Out1'

Data Types: char



2 Alphabetical List

2-112

Alternatives

To trace from a block in the model diagram, right-click a block and select C/C++ Code >
Navigate to C/C++ Code.

Related Examples
• “Trace Model Objects to Generated Code”
• “Model-to-code”



 Simulink.fileGenControl

2-113

Simulink.fileGenControl
Specify root folders in which to put files generated by diagram updates and model builds

Syntax

Simulink.fileGenControl(action)

cfg = Simulink.fileGenControl('getConfig')

Simulink.fileGenControl('reset', 'keepPreviousPath', true)

Simulink.fileGenControl('setConfig', 'config', cfg,

'keepPreviousPath', true, 'createDir', true)

Simulink.fileGenControl('set', 'CacheFolder', cacheFolderPath,

'CodeGenFolder', codeGenFolderPath, 'keepPreviousPath', true,

'createDir', true)

Description

Simulink.fileGenControl(action) performs a requested action related to the
file generation control parameters CacheFolder and CodeGenFolder for the current
MATLAB session. CacheFolder specifies the root folder in which to put model build
artifacts used for simulation, and CodeGenFolder specifies the root folder in which
to put Simulink Coder code generation files. The initial session defaults for these
parameters are provided by the Simulink preferences “Simulation cache folder” and
“Code generation folder”.

cfg = Simulink.fileGenControl('getConfig') returns a handle to an
instance of the Simulink.FileGenConfig object containing the current values of the
CacheFolder and CodeGenFolder parameters. You can then use the handle to get or
set the CacheFolder and CodeGenFolder fields.

Simulink.fileGenControl('reset', 'keepPreviousPath', true) reinitializes
the CacheFolder and CodeGenFolder parameters to the values provided by the
Simulink preferences “Simulation cache folder” and “Code generation folder”. To keep
the previous values of CacheFolder and CodeGenFolder in the MATLAB path, specify
'keepPreviousPath' with the value true.

Simulink.fileGenControl('setConfig', 'config', cfg,

'keepPreviousPath', true, 'createDir', true) sets the file generation control



2 Alphabetical List

2-114

configuration for the current MATLAB session by passing a handle to an instance of
the Simulink.FileGenConfig object containing values for the CacheFolder and/
or CodeGenFolder parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath' with the value
true. To create the specified file generation folders if they do not already exist, specify
'createDir' with the value true.

Simulink.fileGenControl('set', 'CacheFolder', cacheFolderPath,

'CodeGenFolder', codeGenFolderPath, 'keepPreviousPath', true,

'createDir', true) sets the file generation control configuration for the
current MATLAB session by directly passing values for the CacheFolder and/or
CodeGenFolder parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath' with the value
true. To create the specified file generation folders if they do not already exist, specify
'createDir' with the value true.

Input Arguments

action

String specifying one of the following actions:

Action Description

getConfig Returns a handle to an instance of the
Simulink.FileGenConfig object containing the
current values of the CacheFolder and CodeGenFolder
parameters.

reset Reinitializes the CacheFolder and CodeGenFolder
parameters to the values provided by the Simulink
preferences “Simulation cache folder” and “Code generation
folder”.

set Sets the CacheFolder and/or CodeGenFolder parameters
for the current MATLAB session by directly passing values.

setConfig Sets the CacheFolder and/or CodeGenFolder parameters
for the current MATLAB session by passing a handle to an
instance of the Simulink.FileGenConfig object.



 Simulink.fileGenControl

2-115

'config', cfg

Specifies a handle cfg to an instance of the Simulink.FileGenConfig object
containing values to be set for the CacheFolder and/or CodeGenFolder parameters.

'CacheFolder', cacheFolderPath

Specifies a string value cacheFolderPath representing a folder path to directly set for
the CacheFolder parameter.

'CodeGenFolder', codeGenFolderPath

Specifies a string value codeGenFolderPath representing a folder path to directly set
for the CodeGenFolder parameter.

Note: You can specify absolute or relative paths to the build folders. For example:

• 'C:\Work\mymodelsimcache' and '/mywork/mymodelgencode' specify absolute
paths.

• 'mymodelsimcache' is a path relative to the current working folder (pwd).
The software converts a relative path to a fully qualified path at the time the
CacheFolder or CodeGenFolder parameter is set. For example, if pwd is '/
mywork', the result is '/mywork/mymodelsimcache'.

• '../test/mymodelgencode' is a path relative to pwd. If pwd is '/mywork', the
result is '/test/mymodelgencode'.

'keepPreviousPath', true

For reset, set, or setConfig, specifies whether to keep the previous values of
CacheFolder and CodeGenFolder in the MATLAB path. If 'keepPreviousPath' is
omitted or specified as false, the call removes previous folder values from the MATLAB
path.

'createDir', true

For set or setConfig, specifies whether to create the specified file generation folders
if they do not already exist. If 'createDir' is omitted or specified as false, the call
throws an exception if a specified file generation folder does not exist.



2 Alphabetical List

2-116

Output Arguments

cfg

Handle to an instance of the Simulink.FileGenConfig object containing the current
values of the CacheFolder and CodeGenFolder parameters.

Examples

Obtain the current CacheFolder and CodeGenFolder values:
cfg = Simulink.fileGenControl('getConfig');

myCacheFolder = cfg.CacheFolder;

myCodeGenFolder = cfg.CodeGenFolder;

Set the CacheFolder and CodeGenFolder parameters for the current MATLAB session
by first setting fields in an instance of the Simulink.FileGenConfig object and then
passing a handle to the object instance:
% Get the current configuration

cfg = Simulink.fileGenControl('getConfig');

% Change the parameters to C:\cachefolder and current working folder

cfg.CacheFolder = fullfile('C:','cachefolder');

cfg.CodeGenFolder = pwd;

Simulink.fileGenControl('setConfig', 'config', cfg);

Directly set the CacheFolder and CodeGenFolder parameters for the current
MATLAB session without creating an instance of the Simulink.FileGenConfig object:
myCacheFolder = fullfile('C:','cachefolder');

myCodeGenFolder = pwd;

Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder, ...

   'CodeGenFolder', myCodeGenFolder);

Reinitialize the CacheFolder and CodeGenFolder parameters to the values provided
by the Simulink preferences “Simulation cache folder” and “Code generation folder”:
Simulink.fileGenControl('reset');

Alternatives

Instead of setting the CacheFolder and CodeGenFolder parameters just for the
current MATLAB session, you can set the Simulink preferences “Simulation cache folder”



 Simulink.fileGenControl

2-117

and “Code generation folder”, which provide the initial MATLAB session defaults. The
preferences can be set using the Simulink Preferences dialog box or using the MATLAB
command set_param.

More About
• “Control the Location for Generated Files”

See Also
“Code generation folder” | “Simulation cache folder”



2 Alphabetical List

2-118

Simulink.ModelReference.modifyProtectedModel
Modify existing protected model

Syntax

Simulink.ModelReference.modifyProtectedModel(model)

Simulink.ModelReference.modifyProtectedModel(model,Name,Value)

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel(

model,'Harness',true)

[~ ,neededVars] = Simulink.ModelReference.modifyProtectedModel(

model)

Description

Simulink.ModelReference.modifyProtectedModel(model) modifies options
for an existing protected model created from the specified model. If Name,Value pair
arguments are not specified, the modified protected model is updated with default values
and supports only simulation.

Simulink.ModelReference.modifyProtectedModel(model,Name,Value) uses
additional options specified by one or more Name,Value pair arguments. These options
are the same options that are provided by the Simulink.ModelReference.protect
function. However, these options have additional options to change encryption passwords
for read-only view, simulation, and code generation. When you add functionality to
the protected model or change encryption passwords, the unprotected model must be
available. The software searches for the model on the MATLAB path. If the model is not
found, the software reports an error.

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel(

model,'Harness',true) creates a harness model for the protected model. It returns
the handle of the harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.modifyProtectedModel(

model) returns a cell array that includes the names of base workspace variables used by
the protected model.



 Simulink.ModelReference.modifyProtectedModel

2-119

Examples

Update Protected Model with Default Values

Create a modifiable protected model with support for code generation, then reset it to
default values.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect('sldemo_mdlref_counter','Mode',...

'CodeGeneration','Modifiable',true,'Report',true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Modify the model to use default values.

Simulink.ModelReference.modifyProtectedModel(...

'sldemo_mdlref_counter');

The resulting protected model is updated with default values and supports only
simulation.

Remove Functionality from Protected Model

Create a modifiable protected model with support for code generation and Web view, then
modify it to remove the Web view support.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect('sldemo_mdlref_counter','Mode',...

'CodeGeneration','Webview',true,'Modifiable',true,'Report',true);



2 Alphabetical List

2-120

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Remove support for Web view from the protected model that you created.

Simulink.ModelReference.modifyProtectedModel(...

'sldemo_mdlref_counter', 'Mode', 'CodeGeneration','Report',true);

Change Encryption Password for Code Generation

Change an encryption password for a modifiable protected model.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Add the password that the protected model user must provide to generate code.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation(...

'sldemo_mdlref_counter','cgpassword');

Create a modifiable protected model with a report and support for code generation with
encryption.

Simulink.ModelReference.protect('sldemo_mdlref_counter','Mode',...

'CodeGeneration','Encrypt',true,'Modifiable',true,'Report',true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Change the encryption password for simulation.

Simulink.ModelReference.modifyProtectedModel(

'sldemo_mdlref_counter','Mode','CodeGeneration','Encrypt',true,...

'Report',true,'ChangeSimulationPassword',...

{'cgpassword','new_password'});

Add Harness Model for Protected Model

Add a harness model for an existing protected model.



 Simulink.ModelReference.modifyProtectedModel

2-121

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Create a modifiable protected model with a report and support for code generation with
encryption.

Simulink.ModelReference.protect('sldemo_mdlref_counter','Mode',...

'CodeGeneration','Modifiable',true,'Report',true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Add a harness model for the protected model.

[harnessHandle] = Simulink.ModelReference.modifyProtectedModel(...

'sldemo_mdlref_counter','Mode','CodeGeneration','Report',true,...

'Harness',true);

Input Arguments

model — Model name
string (default)

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the protected model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Mode','CodeGeneration','OutputFormat','Binaries','ObfuscateCode',true

specifies that obfuscated code be generated for the protected model. It also specifies that



2 Alphabetical List

2-122

only binary files and headers in the generated code be visible to users of the protected
model.

General

'Path' — Folder for protected model
current working folder (default) | string

Folder for protected model, specified as a string.
Example: 'Path','C:\Work'

'Report' — Option to generate a report
false (default) | true

Option to generate a report, specified as a Boolean value.

To view the report, double-click the protected model block. The report is generated
in HTML format. It includes information on the environment, functionality, license
requirements, and interface for the protected model.
Example: 'Report',true

'Harness' — Option to create a harness model
false (default) | true

Option to create a harness model, specified as a Boolean value.
Example: 'Harness',true

'CustomPostProcessingHook' — Option to add postprocessing function for protected
model files
function handle

Option to add a postprocessing function for protected model
files, specified as a function handle. The function accepts a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.
This object provides information on the source code files and other files generated during
protected model creation. The object also provides information on exported symbols that
you must not modify. Prior to packaging the protected model, the postprocessing function
is called.



 Simulink.ModelReference.modifyProtectedModel

2-123

Example:
'CustomPostProcessingHook',@(protectedMdlInf)myHook(protectedMdlInf)

Functionality

'Mode' — Model protection mode
'Normal' (default) | 'Accelerator' | 'CodeGeneration' | 'ViewOnly'

Model protection mode, specified as a string. Specify one of the following values:

• 'Normal': If the top model is running in 'Normal' mode, the protected model runs
as a child of the top model.

• 'Accelerator': The top model can run in 'Normal' or 'Accelerator' mode.
• 'CodeGeneration': The top model can run in 'Normal' or 'Accelerator' mode

and support code generation.
• 'ViewOnly': Turns off Simulate and Generate code functionality modes. Turns on

the read-only view mode.

Example: 'Mode','Accelerator'

'OutputFormat' — Protected code visibility
'CompiledBinaries' (default) | 'MinimalCode' | 'AllReferencedHeaders'

Note: This argument affects the output only when you specify Mode as 'Accelerator'
or 'CodeGeneration. When you specify Mode as 'Normal', only a MEX-file is part of
the output package.

Protected code visibility, specified as a string. This argument determines what part of
the code generated for a protected model is visible to users. Specify one of the following
values:

• 'CompiledBinaries': Only binary files and headers are visible.
• 'MinimalCode': All code in the build folder is visible. Users can inspect the code in

the protected model report and recompile it for their purposes.
• 'AllReferencedHeaders': All code in the build folder is visible. All headers

referenced by the code are also visible.



2 Alphabetical List

2-124

Example: 'OutputFormat','AllReferencedHeaders'

'ObfuscateCode' — Option to obfuscate generated code
true (default) | false

Option to obfuscate generated code, specified as a Boolean value. Applicable only when
code generation is enabled for the protected model.
Example: 'ObfuscateCode',true

'Webview' — Option to include a Web view
false (default) | true

Option to include a read-only view of protected model, specified as a Boolean value.
Example: 'Webview',true

Encryption

'ChangeSimulationPassword' — Option to change the encryption password for
simulation
cell array of two strings

Option to change the encryption password for simulation, specified as a cell array of two
strings. The first string is the old password, the second string is the new password.
Example: 'ChangeSimulationPassword',{'old_password','new_password'}

'ChangeViewPassword' — Option to change the encryption password for read-only view
cell array of two strings

Option to change the encryption password for read-only view, specified as a cell array of
two strings. The first string is the old password, the second string is the new password.
Example: 'ChangeViewPassword',{'old_password','new_password'}

'ChangeCodeGenerationPassword' — Option to change the encryption password for
code generation
cell array of two strings

Option to change the encryption password for code generation, specified as a cell array of
two strings. The first string is the old password, the second string is the new password.



 Simulink.ModelReference.modifyProtectedModel

2-125

Example: 'ChangeCodeGenerationPassword',
{'old_password','new_password'}

'Encrypt' — Option to encrypt protected model
false (default) | true

Option to encrypt a protected model, specified as a Boolean value. Applicable when you
have specified a password during protection, or by using the following methods:

• Password for read-only view of model:
Simulink.ModelReference.ProtectedModel.setPasswordForView

• Password for simulation:
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

• Password for code generation:
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration

Example: 'Encrypt',true

Output Arguments

harnessHandle — Handle of the harness model
double

Handle of the harness model, returned as a double or 0, depending on the value of
Harness.

If Harness is true, the value is the handle of the harness model; otherwise, the value is
0.

neededVars — Names of base workspace variables
cell array

Names of base workspace variables used by the protected model, returned as a cell array.

The cell array can also include variables that the protected model does not use.

See Also
Simulink.ModelReference.protect |
Simulink.ModelReference.ProtectedModel.setPasswordForModify



2 Alphabetical List

2-126

Simulink.ModelReference.protect
Obscure referenced model contents to hide intellectual property

Syntax

Simulink.ModelReference.protect(model)

Simulink.ModelReference.protect(model,Name,Value)

[harnessHandle] = Simulink.ModelReference.protect(model,'

Harness',true)

[~ ,neededVars] = Simulink.ModelReference.protect(model)

Description

Simulink.ModelReference.protect(model) creates a protected model from
the specified model. It places the protected model in the current working folder. The
protected model has the same name as the source model. It has the extension .slxp.

Simulink.ModelReference.protect(model,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

[harnessHandle] = Simulink.ModelReference.protect(model,'

Harness',true) creates a harness model for the protected model. It returns the handle
of the harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.protect(model) returns a cell
array that includes the names of base workspace variables used by the protected model.

Examples

Protect Referenced Model

Protect a referenced model and place the protected model in the current working folder.

sldemo_mdlref_bus;



 Simulink.ModelReference.protect

2-127

model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model);

A protected model named sldemo_mdlref_counter_bus.slxp is created. The
protected model file is placed in the current working folder.

Place Protected Model in Specified Folder

Protect a referenced model and place the protected model in a specified folder.

sldemo_mdlref_bus;

model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model,'Path','C:\Work');

A protected model named sldemo_mdlref_counter_bus.slxp is created. The
protected model file is placed in C:\Work.

Generate Code for Protected Model

Protect a referenced model, generate code for it in Normal mode, and obfuscate the code.

sldemo_mdlref_bus;

model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model,'Path','C:\Work','Mode','CodeGeneration',...

'ObfuscateCode',true);

A protected model named sldemo_mdlref_counter_bus.slxp is created. The
protected model file is placed in the C:\Work folder. The protected model runs as a child
of the parent model. The code generated for the protected model is obfuscated by the
software.

Control Code Visibility for Protected Model

Control code visibility by allowing users to view only binary files and headers in the code
generated for a protected model.

sldemo_mdlref_bus;

model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model,'Mode','CodeGeneration','OutputFormat',...

'CompiledBinaries');



2 Alphabetical List

2-128

A protected model named sldemo_mdlref_counter_bus.slxp is created. The
protected model file is placed in the current working folder. Users can view only binary
files and headers in the code generated for the protected model.

Create Harness Model for Protected Model

Create a harness model for a protected model and generate an HTML report.
sldemo_mdlref_bus;

modelPath= 'sldemo_mdlref_bus/CounterA'

[harnessHandle] = Simulink.ModelReference.protect(modelPath,'Path','C:\Work',...

'Harness',true,'Report',true);

A protected model named sldemo_mdlref_counter_bus.slxp is created, along with
an untitled harness model. The protected model file is placed in the C:\Work folder. The
folder also contains an HTML report. The handle of the harness model is returned in
harnessHandle.

• Protected Models for Model Reference
• “Test the Protected Model”
• “Package a Protected Model”
• “Specify Custom Obfuscator for Protected Model”

Input Arguments
model — Model name
string (default)

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the model to be protected.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Mode','CodeGeneration','OutputFormat','Binaries','ObfuscateCode',true

specifies that obfuscated code be generated for the protected model. It also specifies that

../../simulink/examples/protected-models-for-model-reference.html


 Simulink.ModelReference.protect

2-129

only binary files and headers in the generated code be visible to users of the protected
model.

'Harness' — Option to create a harness model
false (default) | true

Option to create a harness model, specified as a Boolean value.
Example: 'Harness',true

'Mode' — Model protection mode
'Normal' (default) | 'Accelerator' | 'CodeGeneration' | 'ViewOnly'

Model protection mode, specified as a string. Specify one of the following values:

• 'Normal': If the top model is running in 'Normal' mode, the protected model runs
as a child of the top model.

• 'Accelerator': The top model can run in 'Normal' or 'Accelerator' mode.
• 'CodeGeneration': The top model can run in 'Normal' or 'Accelerator' mode

and support code generation.
• 'ViewOnly': Turns off Simulate and Generate code functionality modes. Turns on

the read-only view mode.

Example: 'Mode','Accelerator'

'ObfuscateCode' — Option to obfuscate generated code
true (default) | false

Option to obfuscate generated code, specified as a Boolean value. Applicable only when
code generation during protection is enabled.
Example: 'ObfuscateCode',true

'Path' — Folder for protected model
current working folder (default) | string

Folder for protected model, specified as a string.
Example: 'Path','C:\Work'

'Report' — Option to generate a report
false (default) | true

Option to generate a report, specified as a Boolean value.



2 Alphabetical List

2-130

To view the report, right-click the protected-model badge icon and select Display
Report. The report is generated in HTML format. It includes information on the
environment, functionality, license requirements, and interface for the protected model.
Example: 'Report',true

'OutputFormat' — Protected code visibility
'CompiledBinaries' (default) | 'MinimalCode' | 'AllReferencedHeaders'

Note: This argument affects the output only when you specify Mode as 'Accelerator'
or 'CodeGeneration. When you specify Mode as 'Normal', only a MEX-file is part of
the output package.

Protected code visibility, specified as a string. This argument determines what part of
the code generated for a protected model is visible to users. Specify one of the following
values:

• 'CompiledBinaries': Only binary files and headers are visible.
• 'MinimalCode': All code in the build folder is visible. Users can inspect the code in

the protected model report and recompile it for their purposes.
• 'AllReferencedHeaders': All code in the build folder is visible. All headers

referenced by the code are also visible.

Example: 'OutputFormat','AllReferencedHeaders'

'Webview' — Option to include a Web view
false (default) | true

Option to include a read-only view of protected model, specified as a Boolean value.
Example: 'Webview',true

'Encrypt' — Option to encrypt protected model
false (default) | true

Option to encrypt a protected model, specified as a Boolean value. Applicable when you
have specified a password during protection, or by using the following methods:

• Password for read-only view of model:
Simulink.ModelReference.ProtectedModel.setPasswordForView



 Simulink.ModelReference.protect

2-131

• Password for simulation:
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

• Password for code generation:
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration

Example: 'Encrypt',true

'CustomPostProcessingHook' — Option to add postprocessing function for protected
model files
function handle

Option to add a postprocessing function for protected model
files, specified as a function handle. The function accepts a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.
This object provides information on the source code files and other files generated during
protected model creation. It also provides information on exported symbols that you must
not modify. Prior to packaging the protected model, the postprocessing function is called.
Example:
'CustomPostProcessingHook',@(protectedMdlInf)myHook(protectedMdlInf)

'‘Modifiable' — Option to create a modifiable protected model
false (default) | true

Option to create a modifiable protected model, specified as a Boolean value. To use this
option:

• Add a password for modification using the
Simulink.ModelReference.ProtectedModel.setPasswordForModify function.
If a password has not been added at the time that you create the modifiable protected
model, you are prompted to create one.

• Modify the options of your protected model by first
providing the modification password using the
Simulink.ModelReference.ProtectedModel.setPasswordForModify function.
Then use the Simulink.ModelReference.modifyProtectedModel function to
make your option changes.

Example: 'Modifiable',true



2 Alphabetical List

2-132

Output Arguments

harnessHandle — Handle of the harness model
double

Handle of the harness model, returned as a double or 0, depending on the value of
Harness.

If Harness is true, the value is the handle of the harness model; otherwise, the value is
0.

neededVars — Names of base workspace variables
cell array

Names of base workspace variables used by the model being protected, returned as a cell
array.

The cell array can also include variables that the protected model does not use.

Alternatives

“Create a Protected Model”

More About
• “Protected Model”
• “Protect a Referenced Model”
• “Protected Model File”
• “Harness Model”
• “Protected Model Report”
• “Code Generation Support in a Protected Model”

See Also
Simulink.ModelReference.modifyProtectedModel |
Simulink.ModelReference.ProtectedModel.clearPasswords |
Simulink.ModelReference.ProtectedModel.clearPasswordsForModel |



 Simulink.ModelReference.protect

2-133

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration

| Simulink.ModelReference.ProtectedModel.setPasswordForModify |
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation |
Simulink.ModelReference.ProtectedModel.setPasswordForView



2 Alphabetical List

2-134

Simulink.ModelReference.ProtectedModel.clearPasswords
Clear all cached passwords for protected models

Syntax

Simulink.ModelReference.ProtectedModel.clearPasswords()

Description

Simulink.ModelReference.ProtectedModel.clearPasswords() clears all
protected model passwords that have been cached during the current MATLAB session.
If this function is not called, cached passwords are cleared at the end of a MATLAB
session.

Examples

Clear all cached passwords for protected models

After using protected models, clear passwords cached for the models during the MATLAB
session.

Simulink.ModelReference.ProtectedModel.clearPasswords()

More About
• “Protect a Referenced Model”

See Also
Simulink.ModelReference.ProtectedModel.clearPasswordsForModel



 Simulink.ModelReference.ProtectedModel.clearPasswordsForModel

2-135

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel

Clear cached passwords for a protected model

Syntax

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel(model)

Description

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel(model)

clears all protected model passwords for model that have been cached during the current
MATLAB session. If this function is not called, cached passwords are cleared at the end
of a MATLAB session.

Examples

Clear all cached passwords for a protected model

After using a protected model, clear passwords cached for the model during the MATLAB
session.

Simulink.ModelReference.ProtectedModel.clearPasswordsForModel(model)

Input Arguments

model — Protected model name
string

Model name specified as a string
Example: ‘rtwdemo_counter’

Data Types: char



2 Alphabetical List

2-136

More About
• “Protect a Referenced Model”

See Also
Simulink.ModelReference.ProtectedModel.clearPasswords



 Simulink.ModelReference.ProtectedModel.HookInfo class

2-137

Simulink.ModelReference.ProtectedModel.HookInfo
class
Package: Simulink.ModelReference.ProtectedModel

Represent files and exported symbols generated by creation of protected model

Description

Specifies information about files and symbols generated when creating a protected
model. The creator of a protected model can use this information for postprocessing of the
generated files prior to packaging. Information includes:

• List of source code files (*.c, *.h, *.cpp,*.hpp).
• List of other related files (*.mat, *.rsp, *.prj, etc.).
• List of exported symbols that you must not modify.

Construction

To access the properties of this class, use the ‘CustomPostProcessingHook’
option of the Simulink.ModelReference.protect function. The
value for the option is a handle to a postprocessing function accepting a
Simulink.ModelReference.ProtectedModel.HookInfo object as input.

Properties

ExportedSymbols — Exported Symbols
cell array of strings

A list of exported symbols generated by protected model that you must not modify.
Default value is empty.

NonSourceFiles — Non source code files
cell array of strings



2 Alphabetical List

2-138

A list of non-source files generated by protected model creation. Examples are *.mat,
*.rsp, and *.prj. Default value is empty.

SourceFiles — Source code files
cell array of strings

A list of source code files generated by protected model creation. Examples are *.c, *.h,
*.cpp, and *.hpp. Default value is empty.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Copying Objects” in the
MATLAB documentation.

Examples
• “Specify Custom Obfuscator for Protected Model”

See Also
“Simulink.ModelReference.protect”



 Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration

2-139

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration
Add or provide encryption password for code generation from protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration(

model,password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration(

model,password) adds an encryption password for code generation if you create
a protected model. If you use a protected model, the function provides the required
password to generate code from the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for code generation.

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration(...

'sldemo_mdlref_counter','password');

Simulink.ModelReference.protect('sldemo_mdlref_counter',...

'Mode','Code Generation','Encrypt',true,'Report',true);

A protected model named sldemo_mdlref_counter.slxp is created that requires an
encryption password for code generation.

Generate Code from an Encrypted Protected Model

Use a protected model with encryption for code generation.

Provide the encryption password required for code generation from the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration(...



2 Alphabetical List

2-140

'sldemo_mdlref_counter','password');

After you have provided the encryption password, you can generate code from the
protected model.

Input Arguments

model — Model name
string

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the protected model.

password — Password for protected model code generation
string

Password, specified as a string. If the protected model is encrypted for code generation,
the password is required.

See Also
Simulink.ModelReference.protect |
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation |
Simulink.ModelReference.ProtectedModel.setPasswordForView



 Simulink.ModelReference.ProtectedModel.setPasswordForModify

2-141

Simulink.ModelReference.ProtectedModel.setPasswordForModify
Add or provide password for modifying protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForModify(model,

password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForModify(model,

password) adds a password for a modifiable protected model. After the password has
been created, the function provides the password for modifying the protected model.

Examples

Add Functionality to Protected Model

Create a modifiable protected model with support for code generation, then modify it to
add Web view support.

Add the password for when a protected model is modified. If you skip this step, you are
prompted to set a password when a modifiable protected model is created.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter','password');

Create a modifiable protected model with support for code generation and Web view.

Simulink.ModelReference.protect('sldemo_mdlref_counter','Mode',...

'CodeGeneration', 'Modifiable',true, 'Report',true);

Provide the password to modify the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'sldemo_mdlref_counter', 'password');



2 Alphabetical List

2-142

Add support for Web view to the protected model that you created.

Simulink.ModelReference.modifyProtectedModel(...

'sldemo_mdlref_counter','Mode','CodeGeneration','Webview',true,...

'Report',true);

Input Arguments

model — Model name
string

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the protected model to be modified.

password — Password to modify protected model
string

Password, specified as a string. The password is required for modification of the
protected model.

See Also
Simulink.ModelReference.modifyProtectedModel |
Simulink.ModelReference.protect



 Simulink.ModelReference.ProtectedModel.setPasswordForSimulation

2-143

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation
Add or provide encryption password for simulation of protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation(

model,password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation(

model,password) adds an encryption password for simulation if you create a protected
model. If you use a protected model, the function provides the required password to
simulate the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for simulation.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation(...

'sldemo_mdlref_counter','password');

Simulink.ModelReference.protect('sldemo_mdlref_counter',...

'Encrypt',true,'Report',true);

A protected model named sldemo_mdlref_counter.slxp is created that requires an
encryption password for simulation.

Simulate an Encrypted Protected Model

Use a protected model with encryption for simulation.

Provide the encryption password required for simulation of the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForSimulation(...



2 Alphabetical List

2-144

'sldemo_mdlref_counter','password');

After you have provided the encryption password, you can simulate the protected model.

Input Arguments

model — Model name
string

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the protected model.

password — Password for protected model simulation
string

Password, specified as a string. If the protected model is encrypted for simulation, the
password is required.

See Also
Simulink.ModelReference.protect |
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration |
Simulink.ModelReference.ProtectedModel.setPasswordForView



 Simulink.ModelReference.ProtectedModel.setPasswordForView

2-145

Simulink.ModelReference.ProtectedModel.setPasswordForView
Add or provide encryption password for read-only view of protected model

Syntax

Simulink.ModelReference.ProtectedModel.setPasswordForView(model,

password)

Description

Simulink.ModelReference.ProtectedModel.setPasswordForView(model,

password) adds an encryption password for read-only view if you create a protected
model. If you use a protected model, the function provides the required password for a
read-only view of the model.

Examples

Create a Protected Model with Encryption

Create a protected model with encryption for read-only view.

Simulink.ModelReference.ProtectedModel.setPasswordForView(...

'sldemo_mdlref_counter','password');

Simulink.ModelReference.protect('sldemo_mdlref_counter',...

'Webview',true,'Encrypt',true,'Report',true);

A protected model named sldemo_mdlref_counter.slxp is created that requires an
encryption password for read-only view.

View an Encrypted Protected Model

Use a protected model with encryption for read-only view.

Provide the encryption password required for the read-only view of the protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForView(...



2 Alphabetical List

2-146

'sldemo_mdlref_counter','password');

After you have provided the encryption password, you have access to the read-only view
of the protected model.

Input Arguments

model — Model name
string

Model name, specified as a string. It contains the name of a model or the path name of a
Model block that references the protected model.

password — Password for read-only view of protected model
string

Password, specified as a string. If the protected model is encrypted for read-only view,
the password is required.

See Also
Simulink.ModelReference.protect |
Simulink.ModelReference.ProtectedModel.setPasswordForCodeGeneration |
Simulink.ModelReference.ProtectedModel.setPasswordForSimulation



 slConfigUIGetVal

2-147

slConfigUIGetVal
Return current value for custom target configuration option

Syntax
value = slConfigUIGetVal(hDlg, hSrc, 'OptionName')

Input Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'

Quoted name of the TLC variable defined for a custom target configuration option.

Output Arguments

Current value of the specified option. The data type of the return value depends on the
data type of the option.

Description

The slConfigUIGetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in
the System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUIGetVal to read the current value of a specified target option.



2 Alphabetical List

2-148

Examples

In the following example, the slConfigUIGetVal function returns the value of the
Terminate function required option on the Code Generation > Interface pane of
the Configuration Parameters dialog box.
function usertarget_selectcallback(hDlg, hSrc)

  disp(['*** Select callback triggered:', sprintf('\n'), ...

        '  Uncheck and disable "Terminate function required".']);

  disp(['Value of IncludeMdlTerminateFcn was ', ...

        slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

  slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

  slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

More About
• “Define and Display Custom Target Options”
• “Parameter Command-Line Information Summary”
• “Support Optional Features”

See Also
slConfigUISetEnabled | slConfigUISetVal



 slConfigUISetEnabled

2-149

slConfigUISetEnabled
Enable or disable custom target configuration option

Syntax
slConfigUISetEnabled(hDlg, hSrc, 'OptionName', true)

slConfigUISetEnabled(hDlg, hSrc, 'OptionName', false)

Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'

Quoted name of the TLC variable defined for a custom target configuration option.
true

Specifies that the option should be enabled.
false

Specifies that the option should be disabled.

Description

The slConfigUISetEnabled function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in
the System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUISetEnabled to enable or disable a specified target option.



2 Alphabetical List

2-150

If you use this function to disable a parameter that is represented in the Configuration
Parameters dialog box, the parameter appears greyed out in the dialog context.

Examples

In the following example, the slConfigUISetEnabled function disables the Terminate
function required option on the Code Generation > Interface pane of the
Configuration Parameters dialog box.
function usertarget_selectcallback(hDlg, hSrc)

  disp(['*** Select callback triggered:', sprintf('\n'), ...

        '  Uncheck and disable "Terminate function required".']);

  disp(['Value of IncludeMdlTerminateFcn was ', ...

        slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

  slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

  slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

More About
• “Define and Display Custom Target Options”
• “Parameter Command-Line Information Summary”
• “Support Optional Features”

See Also
slConfigUIGetVal | slConfigUISetVal



 slConfigUISetVal

2-151

slConfigUISetVal

Set value for custom target configuration option

Syntax

slConfigUISetVal(hDlg, hSrc, 'OptionName', OptionValue)

Arguments

hDlg

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

hSrc

Handle created in the context of a SelectCallback function and used by the
System Target File Callback Interface functions. Pass this variable but do not set it
or use it for another purpose.

'OptionName'

Quoted name of the TLC variable defined for a custom target configuration option.
OptionValue

Value to be set for the specified option.

Description

The slConfigUISetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target is selected in
the System Target File Browser in the Configuration Parameters dialog box. You use
slConfigUISetVal to set the value of a specified target option.



2 Alphabetical List

2-152

Examples

In the following example, the slConfigUISetVal function sets the value 'off' for the
Terminate function required option on the Code Generation > Interface pane of
the Configuration Parameters dialog box.
function usertarget_selectcallback(hDlg, hSrc)

  disp(['*** Select callback triggered:', sprintf('\n'), ...

        '  Uncheck and disable "Terminate function required".']);

  disp(['Value of IncludeMdlTerminateFcn was ', ...

        slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

  slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

  slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

More About
• “Define and Display Custom Target Options”
• “Parameter Command-Line Information Summary”
• “Support Optional Features”

See Also
slConfigUIGetVal | slConfigUISetEnabled



 switchTarget

2-153

switchTarget
Select target for configuration set

Syntax

switchTarget(myConfigObj,systemTargetFile,[])

switchTarget(myConfigObj,systemTargetFile,targetOptions)

Description

switchTarget(myConfigObj,systemTargetFile,[]) selects a system target file for
the active configuration set.

switchTarget(myConfigObj,systemTargetFile,targetOptions) sets the
configuration parameters specified by targetOptions.

Examples

Select target file without options

% Get the active configuration set for 'model'

myConfigObj = getActiveConfigSet(model);

% Change the system target file for the configuration set.

switchTarget(myConfigObj,'ert.tlc',[]);

Select target file with options

>> % Get the active configuration set for the current model

>> myConfigObj=getActiveConfigSet(gcs);

>> 

>> % Specify target options

>> targetOptions.TLCOptions = '-aVarName=1'; 

>> targetOptions.MakeCommand = 'make_rtw'; 

>> targetOptions.Description = 'my target'; 

>> targetOptions.TemplateMakefile = 'grt_default_tmf';

>> 



2 Alphabetical List

2-154

>> % Verify values (optional)

>> targetOptions

          TLCOptions: '-aVarName=1'

         MakeCommand: 'make_rtw'

         Description: 'my target'

    TemplateMakefile: 'grt_default_tmf'

>> % Define a system target file

>> targetSystemFile='grt.tlc';

>> 

>> % Change the system target file and target options

>> % for the configuration set

>> switchTarget(myConfigObj,targetSystemFile,targetOptions);

Input Arguments

myConfigObj — Input data
configuration set object

A configuration set object of Simulink.ConfigSet or configuration reference object
of Simulink.ConfigSetRef. Call getActiveConfigSet to get the configuration set
object.
Example: myConfigObj = getActiveConfigSet(model);

systemTargetFile — Input data
name of system target file

Specify the name of the system target file, such as ert.tlc for Embedded Coder, or
grt.tlc for Generic Real-Time Target coder.

Example: systemTargetFile = ‘ert.tlc’;

Data Types: char

targetOptions — Input options
structure of configuration parameter options

You can choose to modify certain configuration parameters by filling in values in a
structure for fields listed below. If you do not want to use options, specify an empty
structure([]).



 switchTarget

2-155

Field Value

TemplateMakefile String specifying file name of template
makefile.

TLCOptions String specifying TLC argument.
MakeCommand String specifying make command MATLAB

language file.
Description String specifying description of target.

Example: targetOptions.TemplateMakefile = ‘grt_default_tmf’;
Data Types: struct

More About
• “Select a System Target File Programmatically”
• “Select a Target”
• “Set Target Language Compiler Options”

See Also
getActiveConfigSet | Simulink.ConfigSet | Simulink.ConfigSetRef



2 Alphabetical List

2-156

tlc
Invoke Target Language Compiler to convert model description file to generated code

Syntax

tlc [-options] [file]

Description

tlc invokes the Target Language Compiler (TLC) from the command prompt. The TLC
converts the model description file, model.rtw (or similar files), into target-specific
code or text. Typically, you do not call this command because the Simulink Coder build
process automatically invokes the Target Language Compiler when generating code. For
more information, see “Introduction to the Target Language Compiler”.

Note: This command is used only when invoking the TLC separately from the Simulink
Coder build process. You cannot use this command to initiate code generation for a
model.

tlc [-options] [file]

You can change the default behavior by specifying one or more compilation options as
described in “Options” on page 2-156

Options

You can specify one or more compilation options with each tlc command. Use spaces
to separate options and arguments. TLC resolves options from left to right. If you use
conflicting options, the rightmost option prevails. The tlc options are:

• “-r Specify Simulink Coder filename” on page 2-157
• “-v Specify verbose level” on page 2-157



 tlc

2-157

• “-l Specify path to local include files” on page 2-157
• “-m Specify maximum number of errors” on page 2-157
• “-O Specify the output file path” on page 2-158
• “-d[a|c|n|o] Invoke debug mode” on page 2-158
• “-a Specify parameters” on page 2-158
• “-p Print progress” on page 2-158
• “-lint Performance checks and runtime statistics” on page 2-158
• “-xO Parse only” on page 2-159

-r Specify Simulink Coder filename

-r  file_name

Specify the filename that you want to translate.

-v Specify verbose level

-v  number

Specify a number indicating the verbose level. If you omit this option, the default value is
one.

-l Specify path to local include files

-l  path

Specify a folder path to local include files. The TLC searches this path in the order
specified.

-m Specify maximum number of errors

-m number

Specify the maximum number of errors reported by the TLC prior to terminating the
translation of the .tlc file.

If you omit this option, the default value is five.



2 Alphabetical List

2-158

-O Specify the output file path

-O path

Specify the folder path to place output files.

If you omit this option, TLC places output files in the current folder.

-d[a|c|n|o] Invoke debug mode

-da execute any %assert directives

-dc invoke the TLC command line debugger

-dn produce log files, which indicate those lines hit and those lines missed during
compilation.

-do disable debugging behavior

-a Specify parameters

-a identifier = expression

Specify parameters to change the behavior of your TLC program. For example, this
option is used by the Simulink Coder software to set inlining of parameters or file size
limits.

-p Print progress

-p  number

Print a '.' indicating progress for every number of TLC primitive operations executed.

-lint Performance checks and runtime statistics

-lint

Perform simple performance checks and collect runtime statistics.



 tlc

2-159

-xO Parse only

-xO

Parse only a TLC file; do not execute it.



2 Alphabetical List

2-160

updateFilePathsAndExtensions
Update files in model build information with missing paths and file extensions

Syntax
updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments
buildinfo

Build information returned by RTW.BuildInfo.
extensions (optional)

A cell array of character arrays that specifies the extensions (file types) of files
for which to search and include in the update processing. By default, the function
searches for files with a .c extension. The function checks files and updates paths
and extensions based on the order in which you list the extensions in the cell array.
For example, if you specify {'.c' '.cpp'} and a folder contains myfile.c and
myfile.cpp, an instance of myfile would be updated to myfile.c.

Description

Using paths that already exist in the model build information, the
updateFilePathsAndExtensions function checks whether file references in the
build information need to be updated with a path or file extension. This function can be
particularly useful for

• Maintaining build information for a toolchain that requires the use of file extensions
• Updating multiple customized instances of build information for a given model

Note: If you need to use updateFilePathsAndExtensions, you should call it once,
after you add files to the build information, to minimize the potential performance impact
of the required disk I/O.



 updateFilePathsAndExtensions

2-161

Examples

Create the folder path etcproj/etc in your working folder, add files etc.c, test1.c,
and test2.c to the folder etc. This example assumes the working folder is w:\work
\BuildInfo. From the working folder, update build information myModelBuildInfo
with missing paths or file extensions.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, fullfile(pwd,...

 'etcproj', '/etc'), 'test');

addSourceFiles(myModelBuildInfo, {'etc' 'test1'...

 'test2'}, '', 'test');

before=getSourceFiles(myModelBuildInfo, true, true);

before

before = 

    '\etc'    '\test1'    '\test2'

updateFilePathsAndExtensions(myModelBuildInfo);

after=getSourceFiles(myModelBuildInfo, true, true);

after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\test1.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

More About
• “Customize Post-Code-Generation Build Processing”



2 Alphabetical List

2-162

See Also
addIncludeFiles | addIncludePaths | addSourceFiles | addSourcePaths |
updateFileSeparator



 updateFileSeparator

2-163

updateFileSeparator
Change file separator used in model build information

Syntax
updateFileSeparator(buildinfo, separator)

Arguments

buildinfo

Build information returned by RTW.BuildInfo.
separator

A character array that specifies the file separator \ (Windows®) or / (UNIX®) to be
applied to file path specifications.

Description

The updateFileSeparator function changes instances of the current file separator (/ or
\) in the model build information to the specified file separator.

The default value for the file separator matches the value returned by the MATLAB
command filesep. For makefile based builds, you can override the default by defining
a separator with the MAKEFILE_FILESEP macro in the template makefile (see “Cross-
Compile Code Generated on Microsoft Windows”. If the GenerateMakefile parameter
is set, the Simulink Coder software overrides the default separator and updates the
model build information after evaluating the PostCodeGenCommand configuration
parameter.

Examples

Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;



2 Alphabetical List

2-164

updateFileSeparator(myModelBuildInfo, '\');

More About
• “Customize Post-Code-Generation Build Processing”
• “Cross-Compile Code Generated on Microsoft Windows”

See Also
addIncludeFiles | addIncludePaths | addSourceFiles | addSourcePaths |
updateFilePathsAndExtensions



3

Blocks — Alphabetical List



3 Blocks — Alphabetical List

3-2

Async Interrupt
Generate Versa Module Eurocard (VME) interrupt service routines (ISRs) that are to
execute downstream subsystems or Task Sync blocks

Library

Asynchronous / Interrupt Templates

Description 

For each specified VxWorks® VME interrupt level, the Async Interrupt block generates
an interrupt service routine (ISR) that calls one of the following:

• A function call subsystem
• A Task Sync block
• A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

Parameters

VME interrupt number(s)
An array of VME interrupt numbers for the interrupts to be installed. The valid
range is 1..7.

The width of the Async Interrupt block output signal corresponds to the number of
VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block. However, if you use
more than one Async Interrupt block, do not duplicate the VME interrupt numbers
specified in each block.



 Async Interrupt

3-3

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding to the
VME interrupt numbers entered in the VME interrupt number(s)
field. The Stateflow software passes the offsets to the VxWorks call
intConnect(INUM_TO_IVEC(offset),...).

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output of the Async Interrupt
block drives a downstream block (for example, a function-call subsystem). Specify an
array of priorities corresponding to the VME interrupt numbers you specify for VME
interrupt number(s).

The Simulink task priority values are required to generate a rate transition
code (see “Rate Transitions and Asynchronous Blocks” in the Simulink Coder
documentation). Simulink task priority values are also required to maintain absolute
time integrity when the asynchronous task needs to obtain real time from its base
rate or its caller. The assigned priorities typically are higher than the priorities
assigned to periodic tasks.

Note: The Simulink software does not simulate asynchronous task behavior. The
task priority of an asynchronous task is for code generation purposes only and is not
honored during simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the Async Interrupt block
drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts in VxWorks. To
lock out interrupts during the execution of an ISR, set the preemption flag to 0. This
causes generation of intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases the system's interrupt
response time for interrupts at the intLockLevelSet() level and below. Specify
an array of flags corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

Note The number of elements in the arrays specifying VME interrupt vector
offset(s) and Simulink task priority must match the number of elements in the
VME interrupt number(s) array.



3 Blocks — Alphabetical List

3-4

Manage own timer
If checked, the ISR generated by the Async Interrupt block manages its own timer
by reading absolute time from the hardware timer. Specify the size of the hardware
timer with the Timer size option.

Timer resolution (seconds)
The resolution of the ISRs timer. ISRs generated by the Async Interrupt block
maintain their own absolute time counters. By default, these timers obtain their
values from the VxWorks kernel by using the tickGet call. The Timer resolution
field determines the resolution of these counters. The default resolution is 1/60
second. The tickGet resolution for your board support package (BSP) might be
different. You should determine the tickGet resolution for your BSP and enter it in
the Timer resolution field.

If you are targeting VxWorks, you can obtain better timer resolution by replacing the
tickGet call and accessing a hardware timer by using your BSP instead. If you are
targeting an RTOS other than VxWorks, you should replace the tickGet call with
an equivalent call to the target RTOS, or generate code to read the timer register on
the target hardware. See “ Use Timers in Asynchronous Tasks” and “Async Interrupt
Block Implementation” in the Simulink Coder documentation for more information.

Timer size
The number of bits to be used to store the clock tick for a hardware timer. The ISR
generated by the Async Interrupt block uses the timer size when you select Manage
own timer. The size can be 32bits (the default), 16bits, 8bits, or auto. If you
select auto, the Simulink Coder software determines the timer size based on the
settings of Application lifespan (days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However, when Timer size
is auto, you can indirectly control the word size of the counters by setting the
Application lifespan (days) option. If you set Application lifespan (days)
to a value that is too large for the code generator to handle as a 32-bit integer of
the specified resolution, the code generator uses a second 32-bit integer to address
overflows.

For more information, see “Control Memory Allocation for Time Counters”. See also “
Use Timers in Asynchronous Tasks”.

Enable simulation input
If checked, the Simulink software adds an input port to the Async Interrupt block.
This port is for use in simulation only. Connect one or more simulated interrupt
sources to the simulation input.



 Async Interrupt

3-5

Note: Before generating code, consider removing blocks that drive the simulation
input to prevent the blocks from contributing to the generated code. Alternatively,
you can use the Environment Controller block, as explained in “Dual-Model
Approach: Code Generation”. However, if you use the Environment Controller block,
be aware that the sample times of driving blocks contribute to the sample times
supported in the generated code.

Inputs and Outputs

Input
A simulated interrupt source.

Output
Control signal for a

• Function-call subsystem
• Task Sync block
• Stateflow chart configured for a function call input event

Assumptions and Limitations

• The block supports VME interrupts 1 through 7.
• The block requires a VxWorks Board Support Package (BSP) that supports the

following VxWorks system calls:
sysIntEnable

sysIntDisable

intConnect

intLock

intUnlock

tickGet

Performance Considerations

Execution of large subsystems at interrupt level can have a significant impact on
interrupt response time for interrupts of equal and lower priority in the system. As



3 Blocks — Alphabetical List

3-6

a general rule, it is best to keep ISRs as short as possible. Connect only function-call
subsystems that contain a small number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to synchronize the
execution of the function-call subsystem to a VxWorks task. Place the Task Sync block
between the Async Interrupt block and the function-call subsystem. The Async Interrupt
block then uses the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately from interrupt
level. VxWorks then schedules and runs the task. See the description of the Task Sync
block for more information.

See Also

Task Sync
“Handle Asynchronous Events ” in the Simulink Coder documentation



 Asynchronous Task Specification

3-7

Asynchronous Task Specification

Allow for parameter specifications for asynchronous tasks associated with root-level
Inport blocks that output a function-call trigger

Library

Asynchronous

Description 

The Asynchronous Task Specification block, in combination with a root-level Inport block,
allows for an asynchronous function-call input to a model reference.

To implement this feature, place this block at the output port of each root-level Inport
block that outputs a function-call trigger. On the Signal Attributes pane of the
Inport block, select Output function call to specify that the Inport block accepts
function-call signals. Then use the Asynchronous Task Specification blocks to specify the
asynchronous task parameters associated with the respective Inport blocks.

Data Type Support

This specification does not apply to the Asynchronous Task Specification block; the block
accepts only function-call signals.

Parameters and Dialog Box

The Function Block Parameters dialog box of the Asynchronous Task Specification
block appears as follows:



3 Blocks — Alphabetical List

3-8

Task priority

Specifies the priority of the asynchronous task calling the destination function-call
subsystem. The priority must be a value that generates relevant rate transition
behaviors.

Settings

Default: 10

• You can enter an integer or [].
• If you specify an integer for an Asynchronous Task Specification block that resides

in a referenced model, the priority of the initiator in the top model mustmatch the
priority of that block.

• If you specify [] for an Asynchronous Task Specification block that resides in a
referenced model, the priority of the initiator in the top model does not have to match
the priority of that block. For this case, the rate transition algorithm is conservative
(not optimized), assuming that the priority is unknown but static.

Command-Line Information

This block has only one parameter.



 Asynchronous Task Specification

3-9

Parameter: TaskPriority

Value: integer

Configuration Parameters Settings

To create an asynchronous model reference containing a Function-Call and an
Asynchronous Task Specification block, you must follow the procedure outlined in
“Convert an Asynchronous Subsystem into a Model Reference”. One of the steps requires
that you make several changes to configuration parameters.

Additional configuration parameters that require attention are the solver Type and the
Fixed step size (fundamental sample time) on the Solver pane. Both the top model
and the referenced model must use a fixed-step solver. Moreover, the referenced model
must have a fundamental sample time that is an integer multiple of the fundamental
sample time of the top model.

Examples

Asynchronous Function-Call Input to Model

This root-level model uses the Inport block with the Asynchronous Task Specification
block to allow a function-call input signal to a model reference. The priority is set to 10.



3 Blocks — Alphabetical List

3-10

The Asynchronous Task Specification block must immediately follow the Inport block.
Also, a branch cannot emanate from the signal connecting the Inport block to the
Asynchronous Task Specification block.

Setting Priorities

For this model, if the Asynchronous Task Specification block is set to the default value of
10, the Async Interrupt block must also have a priority of 10.



 Asynchronous Task Specification

3-11

Whereas, if the priority of the Asynchronous Task Specification block is set to the empty
matrix, [], the priority of the Async Interrupt can be a value other than 10.

Characteristics

Direct Feedthrough Yes
Sample Time Inherited from the driving block



3 Blocks — Alphabetical List

3-12

Scalar Expansion N/A
Dimensionalized No
Multidimensionalized No
Zero-Crossing Detection No

See Also

Function-Call Subsystem block

“Handle Asynchronous Events ”

“Model Reference”

Inport block



 Generated S-Function

3-13

Generated S-Function
Represent model or subsystem as generated S-function code

Library

S-Function Target

Description 

An instance of the Generated S-Function block represents code the Simulink Coder
software generates from its S-function target for a model or subsystem. For example, you
extract a subsystem from a model and build a Generated S-Function block from it, using
the S-function target. This mechanism can be useful for

• Converting models and subsystems to application components
• Reusing models and subsystems
• Optimizing simulation — often, an S-function simulates more efficiently than the

original model

For details on how to create a Generated S-Function block from a subsystem, see “Create
S-Function Blocks from a Subsystem” in the Simulink Coder documentation.

Requirements

• The S-Function block must perform identically to the model or subsystem from which
it was generated.

• Before creating the block, explicitly specify Inport block signal attributes, such as
signal widths or sample times. The sole exception to this rule concerns sample times,
as described in “Sample Time Propagation in Generated S-Functions”.

• You must set the solver parameters of the Generated S-Function block to be the
same as those of the original model or subsystem. The generated S-function code



3 Blocks — Alphabetical List

3-14

will operate identically to the original subsystem (see “Choice of Solver Type” in the
Simulink Coder documentation for an exception to this rule).

Parameters

Generated S-function name (model_sf)
The name of the generated S-function. The Simulink Coder software derives the
name by appending _sf to the name of the model or subsystem from which the block
is generated.

Show module list
If checked, displays modules generated for the S-function.

See Also

“Create S-Function Blocks from a Subsystem” in the Simulink Coder documentation



 Model Header

3-15

Model Header

Specify custom header code

Library

Custom Code

Description 

The Model Header block adds user-specified custom code to the model.h file that the
code generator creates for the model that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters

Top of Model Header
Code to be added near the top of the generated model header file, in a user code
(top of header file) section.

Bottom of Model Header
Code to be added at the bottom of the generated model header file, in a user code
(bottom of header file) section.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



3 Blocks — Alphabetical List

3-16

See Also

Model Source, System Derivatives, System Disable, System Enable, System Initialize,
System Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



 Model Source

3-17

Model Source

Specify custom source code

Library

Custom Code

Description 

The Model Source block adds user-specified custom code to the model.c or model.cpp
file that the code generator creates for the model that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters

Top of Model Source
Code to be added near the top of the generated model source file, in a user code
(top of source file) section.

Bottom of Model Source
Code to be added at the bottom of the generated model source file, in a user code
(bottom of source file) section.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



3 Blocks — Alphabetical List

3-18

See Also

Model Header, System Derivatives, System Disable, System Enable, System Initialize,
System Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



 Protected RT

3-19

Protected RT
Handle transfer of data between blocks operating at different rates and maintain data
integrity

Library

VxWorks (vxlib1)

Description 

The Protected RT block is a Rate Transition block that is preconfigured to maintain
data integrity during data transfers. For more information, see Rate Transition in the
Simulink Reference.



3 Blocks — Alphabetical List

3-20

System Derivatives
Specify custom system derivative code

Library
Custom Code

Description 
The System Derivatives block adds user-specified custom code to the declaration,
execution, and exit code sections of the SystemDerivatives function that the code
generator creates for the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters
System Derivatives Function Declaration Code

Code to be added to the declaration section of the generated SystemDerivatives
function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated SystemDerivatives
function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated SystemDerivatives function.

Example
See “Embed Custom Code Directly Into MdlStart Function”.



 System Derivatives

3-21

See Also

Model Header, Model Source, System Disable, System Enable, System Initialize, System
Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-22

System Disable
Specify custom system disable code

Library

Custom Code

Description 

The System Disable block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemDisable function that the code generator creates for
the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters
System Disable Function Declaration Code

Code to be added to the declaration section of the generated SystemDisable
function.

System Disable Function Execution Code
Code to be added to the execution section of the generated SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated SystemDisable function.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



 System Disable

3-23

See Also

Model Header, Model Source, System Derivatives, System Enable, System Initialize,
System Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-24

System Enable
Specify custom system enable code

Library

Custom Code

Description 

The System Enable block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemEnable function that the code generator creates for
the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters

System Enable Function Declaration Code
Code to be added to the declaration section of the generated SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable function.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



 System Enable

3-25

See Also

Model Header, Model Source, System Derivatives, System Disable, System Initialize,
System Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-26

System Initialize
Specify custom system initialization code

Library
Custom Code

Description 
The System Initialize block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemInitialize function that the code generator
creates for the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters
System Initialize Function Declaration Code

Code to be added to the declaration section of the generated SystemInitialize
function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated SystemInitialize
function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated SystemInitialize function.

Example
See “Embed Custom Code Directly Into MdlStart Function”.



 System Initialize

3-27

See Also

Model Header, Model Source, System Derivatives, System Disable, System Enable,
System Outputs, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-28

System Outputs
Specify custom system outputs code

Library

Custom Code

Description 

The System Outputs block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemOutputs function that the code generator creates for
the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters
System Outputs Function Declaration Code

Code to be added to the declaration section of the generated SystemOutputs
function.

System Outputs Function Execution Code
Code to be added to the execution section of the generated SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated SystemOutputs function.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



 System Outputs

3-29

See Also

Model Header, Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Start, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-30

System Start
Specify custom system startup code

Library

Custom Code

Description 

The System Start block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemStart function that the code generator creates for
the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters

System Start Function Declaration Code
Code to be added to the declaration section of the generated SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart function.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



 System Start

3-31

See Also

Model Header, Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Terminate, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-32

System Terminate
Specify custom system termination code

Library
Custom Code

Description 
The System Terminate block adds user-specified custom code to the declaration,
execution, and exit code sections of the SystemTerminate function that the code
generator creates for the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters
System Terminate Function Declaration Code

Code to be added to the declaration section of the generated SystemTerminate
function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated SystemTerminate
function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated SystemTerminate function.

Example
See “Embed Custom Code Directly Into MdlStart Function”.



 System Terminate

3-33

See Also

Model Header, Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-34

System Update
Specify custom system update code

Library

Custom Code

Description 

The System Update block adds user-specified custom code to the declaration, execution,
and exit code sections of the SystemUpdate function that the code generator creates for
the model or subsystem that contains the block.

Note: If you include this block in a referenced model (model referenced by a Model block),
the Simulink Coder build process ignores the block for simulation target builds, but
includes any specified custom code in the build process for other targets.

Parameters

System Update Function Declaration Code
Code to be added to the declaration section of the generated SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate function.

Example

See “Embed Custom Code Directly Into MdlStart Function”.



 System Update

3-35

See Also

Model Header, Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Terminate
“Insert Custom Code Blocks” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-36

Task Sync

Spawn VxWorks task to run code of downstream function-call subsystem or Stateflow
chart

Library

Asynchronous / Interrupt Templates

Description 

The Task Sync block spawns a VxWorks task that calls a function-call subsystem or
Stateflow chart. Typically, you place the Task Sync block between an Async Interrupt
block and a function-call subsystem block or Stateflow chart. Alternatively, you might
connect the Task Sync block to the output port of a Stateflow diagram that has an event,
Output to Simulink, configured as a function call.

The Task Sync block performs the following functions:

• Uses the VxWorks system call taskSpawn to spawn an independent task. When the
task is activated, it calls the downstream function-call subsystem code or Stateflow
chart. The block calls taskDelete to delete the task during model termination.

• Creates a semaphore to synchronize the connected subsystem with execution of the
block.

• Wraps the spawned task in an infinite for loop. In the loop, the spawned task listens
for the semaphore, using semTake. The first call to semTake specifies NO_WAIT.
This allows the task to determine whether a second semGive has occurred prior to
the completion of the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

• Generates synchronization code (for example, semGive()). This code allows the
spawned task to run. The task in turn calls the connected function-call subsystem
code. The synchronization code can run at interrupt level. This is accomplished
through the connection between the Async Interrupt and Task Sync blocks, which
triggers execution of the Task Sync block within an ISR.



 Task Sync

3-37

• Supplies absolute time if blocks in the downstream algorithmic code require it. The
time is supplied either by the timer maintained by the Async Interrupt block, or by an
independent timer maintained by the task associated with the Task Sync block.

When you design your application, consider when timer and signal input values should
be taken for the downstream function-call subsystem that is connected to the Task Sync
block. By default, the time and input data are read when VxWorks activates the task.
For this case, the data (input and time) are synchronized to the task itself. If you select
the Synchronize the data transfer of this task with the caller task option and the
Task Sync block is driven by an Async Interrupt block, the time and input data are read
when the interrupt occurs (that is, within the ISR). For this case, data is synchronized
with the caller of the Task Sync block.

Parameters

Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call. VxWorks uses
this name as the task function name. This name also serves as a debugging aid;
routines use the task name to identify the task from which they are called.

Simulink task priority (0–255)
The VxWorks task priority to be assigned to the function-call subsystem task when
spawned. VxWorks priorities range from 0 to 255, with 0 representing the highest
priority.

Note: The Simulink software does not simulate asynchronous task behavior. The
task priority of an asynchronous task is for code generation purposes only and is not
honored during simulation.

Stack size (bytes)
Maximum size to which the task's stack can grow. The stack size is allocated when
VxWorks spawns the task. Choose a stack size based on the number of local variables
in the task. You should determine the size by examining the generated code for the
task (and functions that are called from the generated code).

Synchronize the data transfer of this task with the caller task
If not checked (the default),



3 Blocks — Alphabetical List

3-38

• The block maintains a timer that provides absolute time values required by
the computations of downstream blocks. The timer is independent of the timer
maintained by the Async Interrupt block that calls the Task Sync block.

• A Timer resolution option appears.
• The Timer size option specifies the word size of the time counter.

If checked,

• The block does not maintain an independent timer, and does not display the
Timer resolution field.

• Downstream blocks that require timers use the timer maintained by the Async
Interrupt block that calls the Task Sync block (see “ Use Timers in Asynchronous
Tasks” in the Simulink Coder documentation). The timer value is read at the time
the asynchronous interrupt is serviced, and data transfers to blocks called by the
Task Sync block and execute within the task associated with the Async Interrupt
block. Therefore, data transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block's timer in seconds. This option appears only if
Synchronize the data transfer of this task with the caller task is not checked.
By default, the block gets the timer value by calling the VxWorks tickGet function.
The default resolution is 1/60 second. The tickGet resolution for your BSP might be
different. You should determine the tickGet resolution for your BSP and enter it in
the Timer resolution field.

Timer size
The number of bits to be used to store the clock tick for a hardware timer. The
size can be 32bits (the default), 16bits, 8bits, or auto. If you select auto,
the Simulink Coder software determines the timer size based on the settings of
Application lifespan (days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However, when Timer size
is auto, you can indirectly control the word size of the counters by setting the
Application lifespan (days) option. If you set Application lifespan (days)  to
a value that is too large for the code generator to handle as a 32-bit integer of the
specified resolution, it uses a second 32-bit integer to address overflows.

For more information, see “Control Memory Allocation for Time Counters”. See also “
Use Timers in Asynchronous Tasks”.



 Task Sync

3-39

Inputs and Outputs

Input
A call from an Async Interrupt block.

Output
A call to a function-call subsystem.

See Also

Async Interrupt
“Handle Asynchronous Events ” in the Simulink Coder documentation



3 Blocks — Alphabetical List

3-40

Unprotected RT
Handle transfer of data between blocks operating at different rates and maintain
determinism

Library

VxWorks (vxlib1)

Description 

The Unprotected RT block is a Rate Transition block that is preconfigured to conduct
deterministic data transfers. For more information, see Rate Transition in the Simulink
Reference.



4

Configuration Parameters for
Simulink Models

• “Code Generation Pane: General” on page 4-2
• “Code Generation Pane: Report” on page 4-32
• “Code Generation Pane: Comments” on page 4-48
• “Code Generation Pane: Symbols” on page 4-64
• “Code Generation Pane: Custom Code” on page 4-98
• “Code Generation Pane: Debug” on page 4-110
• “Code Generation Pane: Interface” on page 4-117
• “Code Generation Pane: RSim Target” on page 4-176
• “Code Generation Pane: S-Function Target” on page 4-180
• “Code Generation Pane: Tornado Target” on page 4-183
• “Code Generation: Coder Target Pane” on page 4-201
• “Parameter Reference” on page 4-224



4 Configuration Parameters for Simulink Models

4-2

Code Generation Pane: General

The Code Generation pane includes the following parameters when the Simulink
Coder product is installed on your system and you select a GRT-based target.

To open the Code Generation pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Code Generation.

The Code Generation pane includes additional parameters when the Simulink Coder
product is installed on your system and you select an ERT-based target. ERT-based
target parameters require an Embedded Coder license when generating code.



 Code Generation Pane: General

4-3

In this section...

“Code Generation: General Tab Overview” on page 4-4
“System target file” on page 4-4
“Browse” on page 4-6
“Language” on page 4-6
“Description” on page 4-8
“Target hardware” on page 4-8
“Toolchain” on page 4-9
“Build configuration” on page 4-10
“Tool/Options” on page 4-12
“Compiler optimization level” on page 4-13



4 Configuration Parameters for Simulink Models

4-4

In this section...

“Custom compiler optimization flags” on page 4-14
“Generate makefile” on page 4-15
“Make command” on page 4-16
“Template makefile” on page 4-18
“Ignore custom storage classes” on page 4-19
“Ignore test point signals” on page 4-20
“Select objective” on page 4-21
“Prioritized objectives” on page 4-23
“Set Objectives” on page 4-23
“Set Objectives — Code Generation Advisor Dialog Box” on page 4-23
“Check Model” on page 4-26
“Check model before generating code” on page 4-26
“Generate code only” on page 4-27
“Build/Generate Code” on page 4-28
“Package code and artifacts” on page 4-29
“Zip file name” on page 4-30

Code Generation: General Tab Overview

Set up general information about code generation for a model's active configuration set,
including target selection, documentation, and build process parameters.

To open the Code Generation pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Code Generation.

See Also

“Code Generation Pane: General” on page 4-2

System target file

Specify the system target file.



 Code Generation Pane: General

4-5

Settings

Default: grt.tlc

You can specify the system target file in these ways:

• Use the System Target File Browser. Click the Browse button, which lets you select
a preset target configuration consisting of a system target file, template makefile, and
make command.

• Enter the name of your system target file in this field.

Setting System target file to ert.tlc displays the Target hardware parameter.
When you set the Target hardware parameter to a specific type of hardware, the
Configuration Parameters dialog box displays a Coder Target pane for that specific
hardware. For more information, see “Target hardware” on page 4-8.

Tips

• The System Target File Browser lists system target files found on the MATLAB path.
Some system target files require additional licensed products.

• Using ERT-based system target files such as ert.tlc to generate code requires an
Embedded Coder license.

• To configure your model for rapid simulation, select rsim.tlc.
• To configure your model for Simulink Real-Time™, select slrt.tlc or

slrtert.tlc.

Command-Line Information
Parameter: SystemTargetFile
Type: string
Value: valid system target file
Default: 'grt.tlc'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact



4 Configuration Parameters for Simulink Models

4-6

Application Setting

Safety precaution No impact
ERT based (requires Embedded Coder license)

See Also

“Available Targets”

Browse

Open the System Target File Browser, which lets you select a preset target configuration
consisting of a system target file, template makefile, and make command. The value you
select is filled into “System target file”.

Tips

• The System Target File Browser lists system target files found on the MATLAB path.
Some system target files require additional licensed products, such as the Embedded
Coder product.

• To configure your model for rapid simulation, select rsim.tlc.
• To configure your model for Simulink Real-Time, select slrt.tlc or slrtert.tlc.

See Also

• “Select a Target”
• “Available Targets”

Language

Specify C or C++ code generation.

Settings

Default: C

C

Generates C code and places the generated files in your build folder.
C++



 Code Generation Pane: General

4-7

Generates C++ code and places the generated files in your build folder.

On the Code Generation > Interface pane, if you additionally set the Code
interface packaging parameter to C++ class, the build generates a C++ class
interface to model code. The generated interface encapsulates required model data
into C++ class attributes and model entry point functions into C++ class methods.

If you set Code interface packaging to a value other than C++ class, the build
generates C++ compatible .cpp files containing model interfaces enclosed within an
extern "C" link directive.

You might need to configure the Simulink Coder software to use a compiler before you
build a system.

Dependencies

Selecting C++ enables and selects the value C++ class for the Code interface
packaging parameter on the Code Generation > Interface pane.

Command-Line Information
Parameter: TargetLang
Type: string
Value: 'C' | 'C++'
Default: 'C'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Change Programming Language”

“Compiler or IDE Selection and Configuration”

“Function Prototype Control”



4 Configuration Parameters for Simulink Models

4-8

“C++ Class Interface Control”

Description

This field displays the description of the system target file. You can use this description
to differentiate between two system target files that have the same file name. To change
the value of this description, click the Browse button.

See Also

“Browse” on page 4-6

Target hardware

Select the target hardware for which to generate code.

Note:

• This parameter only appears when the model is configured to use a toolchain-based
code generation target, as described in “Configure the Build Process”.

• Using this parameter to generate code requires an Embedded Coder license.

To use the Target hardware parameter, both of the following actions must be complete:

• Set the System target file parameter to ert.tlc. This action makes the Target
hardware parameter visible on the Code Generation pane.

• Use Support Package Installer to install the Embedded Coder support package for
your target hardware. This action makes target hardware options available for the
Target hardware parameter.

To install support for your target hardware, set Target hardware to Get more. This
action opens Support Package Installer and displays a list of the support packages that
are available for Embedded Coder software.

Settings

Default: None



 Code Generation Pane: General

4-9

None

Target hardware not specified.
Get more...

Select Get more... to start Support Package Installer and install Embedded Coder
support packages. Embedded Coder support packages add options to the Target
hardware parameter.

Command-Line Information
Parameter: Not available
Type: Not available
Value: Not available
Default: Not available

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Toolchain”
• “Adding a Custom Toolchain”

Toolchain

Specify the toolchain to use when building an executable or library.

Note: This parameter only appears when the model is configured to use a toolchain-based
code generation target, as described in “Configure the Build Process”.

Settings

Default: Automatically locate an installed toolchain



4 Configuration Parameters for Simulink Models

4-10

The list of available toolchains depends on the host computer platform, and can include
custom toolchains that you added.

When Toolchain is set to Automatically locate an installed toolchain, the
coder software:

1 Searches your host computer for installed toolchains.
2 Selects the most current toolchain.
3 Displays the name of the selected toolchain immediately below the drop down menu.

Tip

Click Validate to verify that the registration information for the toolchain is valid. When
the validation process is complete, a separate Validation report window opens and
displays the results. The Validation report states whether the toolchain registration
Passed or Failed and provides status for each step in the validation process. To fix a
failure, edit the toolchain definition and repeat the registration process.

Command-Line Information
Parameter: Toolchain
Type: string
Value: 'Automatically locate an installed toolchain' | A valid toolchain
name
Default: 'Automatically locate an installed toolchain'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Toolchain”
• “Adding a Custom Toolchain”

Build configuration



 Code Generation Pane: General

4-11

Specify compiler optimization or debug settings for toolchain.

Note: This parameter only appears when the model is configured to use a toolchain-based
code generation target, as described in “Configure the Build Process”.

Settings

Default: Faster Builds

Faster Builds

Optimize for shorter build times.
Faster Runs

Optimize for faster-running executable.
Debug

Optimize for debugging.
Specify

Selecting Specify displays a table of tools with editable options. Use this table to
customize settings for the current model. See “Tool/Options” on page 4-12.

Tip

Click Show settings to display a table of tools with options for the current build
configuration. See “Tool/Options” on page 4-12.

Customize the toolchain options for the Specify build configuration. These options only
apply to the current project.

Dependencies

Selecting Specify displays a table of tools with editable options. Use this table to
customize settings for the current model. See “Tool/Options” on page 4-12.

Command-Line Information
Parameter: BuildConfiguration
Type: string
Value: 'Faster Builds' | 'Faster Runs' | 'Debug' | 'Specify'
Default: 'Faster Builds'



4 Configuration Parameters for Simulink Models

4-12

Recommended Settings

Application Setting

Debugging Debug

Traceability No impact
Efficiency Faster Runs

Safety precaution No impact

See Also

• “Toolchain”
• “Adding a Custom Toolchain”

Tool/Options

Display or customize build configuration settings.

Note: These parameters only appear when the model is configured to use the toolchain
approach, as described in “Configure the Build Process”

Settings

The tools column can include: Assembler, C Compiler, Linker, Shared Library Linker,
C++ Compiler, C++ Linker, C++ Shared Library Linker, Archiver, Download, Execute,
Make Tool. The options can vary by tool and toolchain and can contain macros. Consult
third-party toolchain documentation for more information about options you can use with
a specific tool.

Dependencies

To display a table of tools and options for the current build configuration, click Show
settings, next to Build configuration.

To create a custom build configuration by editing a table of Tool/Options, set Build
configuration to Specify.

Command-Line Information
Parameter: CustomToolchainOptions



 Code Generation Pane: General

4-13

Type: string
Value: Specify the baseline toolchain settings. Use a new-line-delineated string to specify
each option and its values.
Default: ''

See Also

• “Toolchain”
• “Adding a Custom Toolchain”

Compiler optimization level

Control compiler optimizations for building generated code, using flexible, generalized
controls.

Note: This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Configure the Build Process”.

Settings

Default: Optimizations off (faster builds)

Optimizations off (faster builds)

Customizes compilation during the Simulink Coder makefile build process to
minimize compilation time.

Optimizations on (faster runs)

Customizes compilation during the Simulink Coder makefile build process to
minimize run time.

Custom

Allows you to specify custom compiler optimization flags to be applied during the
Simulink Coder makefile build process.

Tips

• Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds) allow you to easily toggle compiler
optimizations on and off during code development.



4 Configuration Parameters for Simulink Models

4-14

• Custom allows you to enter custom compiler optimization flags at Simulink GUI
level, rather than editing compiler flags into template makefiles (TMFs) or supplying
compiler flags to Simulink Coder make commands.

• If you specify compiler options for your Simulink Coder makefile build using
OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the value of
Compiler optimization level is ignored and a warning is issued about the ignored
parameter.

Dependencies

This parameter enables Custom compiler optimization flags.

Command-Line Information
Parameter: RTWCompilerOptimization
Type: string
Value: 'Off' | 'On' | 'Custom'
Default: 'Off'

Recommended Settings

Application Setting

Debugging Optimizations off (faster builds)

Traceability Optimizations off (faster builds)

Efficiency Optimizations on (faster runs)

(execution), No impact (ROM, RAM)
Safety precaution No impact

See Also

• “Custom compiler optimization flags” on page 4-14
• “Control Compiler Optimizations”

Custom compiler optimization flags

Specify compiler optimization flags to be applied to building the generated code for your
model.

Note: This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Configure the Build Process”.



 Code Generation Pane: General

4-15

Settings

Default: ''

Specify compiler optimization flags without quotes, for example, -O2.

Dependency

This parameter is enabled by selecting the value Custom for the parameter Compiler
optimization level.

Command-Line Information
Parameter: RTWCustomCompilerOptimizations
Type: string
Value: '' | user-specified flags
Default: ''

Recommended Settings

See “Compiler optimization level” on page 4-13.

See Also

• “Compiler optimization level” on page 4-13
• “Control Compiler Optimizations”

Generate makefile

Enable generation of a makefile based on a template makefile.

Note: This option only appears when the model is configured to use a template makefile-
based code generation target, as described in “Configure the Build Process”.

Settings

Default: on

 On
Generates a makefile for a model during the build process.



4 Configuration Parameters for Simulink Models

4-16

 Off
Suppresses the generation of a makefile. You must set up post code generation build
processing, including compilation and linking, as a user-defined command.

Dependencies

This parameter enables:

• Make command
• Template makefile

Command-Line Information
Parameter: GenerateMakefile
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Customize Post-Code-Generation Build Processing”
• “Customize Build Process with STF_make_rtw_hook File”
• “Target Development and the Build Process”

Make command

Specify a make command and optionally append makefile options.

Note: This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Configure the Build Process”.



 Code Generation Pane: General

4-17

Settings

Default: make_rtw

An internal MATLAB command used by code generation software to control the build
process. The specified make command is invoked when you start a build.

• Each target has an associated make command, automatically supplied when you
select a target file using the System Target File Browser.

• Some third-party targets supply a make command. See the vendor's documentation.
• You can supply makefile options in the Make command field. The options are passed

to the command-line invocation of the make utility, which adds them to the overall
flags passed to the compiler. Append the options after the make command, as in the
following example:

make_rtw OPTS="-DMYDEFINE=1"

The syntax for makefile options differs slightly for different compilers.

Tip

• Most targets use the default command.
• You should not invoke make_rtw or other internal make commands directly from

MATLAB code. To initiate a model build from MATLAB code, use documented build
commands such as slbuild or rtwbuild.

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information
Parameter: MakeCommand
Type: string
Value: valid make command MATLAB language file
Default: 'make_rtw'

Recommended Settings

Application Setting

Debugging No impact



4 Configuration Parameters for Simulink Models

4-18

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution make_rtw

See Also

• “Template Makefiles and Make Options”
• “Customize Build Process with STF_make_rtw_hook File”
• “Target Development and the Build Process”

Template makefile

Specify the template makefile from which to generate the makefile.

Note: This parameter only appears when the model is configured to use a template
makefile-based code generation target, as described in “Configure the Build Process”.

Settings

Default: grt_default_tmf

The template makefile determines which compiler runs, during the make phase of the
build, to compile the generated code. You can specify template makefiles in the following
ways:

• Generate a value by selecting a target configuration using the System Target File
Browser.

• Explicitly enter a custom template makefile filename (including the extension). The
file must be on the MATLAB path.

Tips

• If you do not include a filename extension for a custom template makefile, the code
generator attempts to find and execute a MATLAB language file.

• You can customize your build process by modifying an existing template makefile or
by providing your own template makefile.



 Code Generation Pane: General

4-19

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information
Parameter: TemplateMakefile
Type: string
Value: valid template makefile filename
Default: 'grt_default_tmf'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Template Makefiles and Make Options”
• “Available Targets”

Ignore custom storage classes

Specify whether to apply or ignore custom storage classes.

Settings

Default: off

 On
Ignores custom storage classes by treating data objects that have them as if their
storage class attribute is set to Auto. Data objects with an Auto storage class do not
interface with external code and are stored as local or shared variables or in a global
data structure.

 Off



4 Configuration Parameters for Simulink Models

4-20

Applies custom storage classes as specified. You must clear this option if the model
defines data objects with custom storage classes.

Tips

• Clear this parameter before configuring data objects with custom storage classes.
• Setting for top-level and referenced models must match.

Dependencies

• This parameter only appears for ERT-based targets.
• Clear this parameter to enable module packaging features.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: IgnoreCustomStorageClasses
Type: string
Value: 'on' | 'off
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Custom Storage Classes” in the Embedded Coder documentation

Ignore test point signals

Specify allocation of memory buffers for test points.

Settings

Default: Off



 Code Generation Pane: General

4-21

 On
Ignores test points during code generation, allowing optimal buffer allocation for
signals with test points, facilitating transition from prototyping to deployment and
avoiding accidental degradation of generated code due to workflow artifacts.

 Off
Allocates separate memory buffers for test points, resulting in a loss of code
generation optimizations such as reducing memory usage by storing signals in
reusable buffers.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: IgnoreTestpoints
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability No impact
Efficiency On
Safety precaution No impact

See Also

• “Signals with Test Points” in the Simulink Coder documentation
• “Test Points” in the Simulink documentation
• “Signals” in the Simulink Coder documentation

Select objective



4 Configuration Parameters for Simulink Models

4-22

Select code generation objectives to use with the Code Generation Advisor.

Settings

Default: Unspecified

Unspecified

No objective specified. Do not optimize code generation settings using the Code
Generation Advisor.

Debugging

Specifies debugging objective. Optimize code generation settings for debugging the
code generation build process using the Code Generation Advisor.

Execution efficiency

Specifies execution efficiency objective. Optimize code generation settings to achieve
fast execution time using the Code Generation Advisor.

Tips

For more objectives, specify an ERT-based target.

Dependency

These parameters appear only for GRT-based targets.

Command-Line Information
Parameter: 'ObjectivePriorities'
Type: cell array of strings
Value: {''} | {'Debugging'} | {'Execution efficiency'}
Default: {''}

Recommended Settings

Application Setting

Debugging Debugging

Traceability Not applicable for GRT-based targets
Efficiency Execution efficiency



 Code Generation Pane: General

4-23

Application Setting

Safety precaution Not applicable for GRT-based targets

See Also

• “Application Objectives” in the Embedded Coder documentation.
• “Application Objectives” in the Simulink Coder documentation.

Prioritized objectives

List objectives that you specify by clicking the Set Objectives button.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Command: get_param('model', 'ObjectivePriorities')

See Also

• “Application Objectives” in the Embedded Coder documentation.
• “Application Objectives” in the Simulink Coder documentation.

Set Objectives

Open Configuration Set Objectives dialog box.

Dependency

This button appears only for ERT-based targets.

See Also

• “Application Objectives” in the Embedded Coder documentation.
• “Application Objectives” in the Simulink Coder documentation.

Set Objectives — Code Generation Advisor Dialog Box



4 Configuration Parameters for Simulink Models

4-24

Select and prioritize code generation objectives to use with the Code Generation Advisor.

Settings

1 From the Available objectives list, select objectives.
2 Click the select button (arrow pointing right) to move the objectives that you selected

into the Selected objectives - prioritized list.
3 Click the higher priority (up arrow) and lower priority (down arrow) buttons to

prioritize the objectives.

Objectives

List of available objectives.
Execution efficiency — Configure code generation settings to achieve fast execution
time.
ROM efficiency — Configure code generation settings to reduce ROM usage.
RAM efficiency — Configure code generation settings to reduce RAM usage.
Traceability — Configure code generation settings to provide mapping between model
elements and code.



 Code Generation Pane: General

4-25

Safety precaution — Configure code generation settings to increase clarity,
determinism, robustness, and verifiability of the code.
Debugging — Configure code generation settings to debug the code generation build
process.
MISRA-C:2004 guidelines — Configure code generation settings to increase
compliance with MISRA-C:2004 guidelines.
Polyspace — Configure code generation settings to prepare the code for Polyspace®

analysis.

Note: If you select the MISRA-C:2004 guidelines code generation objective, the Code
Generation Advisor checks:

• The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

• For blocks that are not supported or recommended for MISRA-C:2004 compliant code
generation.

Priorities

After you select objectives from the Available objectives parameter, organize the
objectives in the Selected objectives - prioritized parameter with the highest priority
objective at the top.

Dependency

This dialog box appears only for ERT-based targets.

Command-Line Information
Parameter: 'ObjectivePriorities'
Type: cell array of strings; combination of the available values
Value: {''} | {'Execution efficiency'} | {'ROM efficiency'} | {'RAM
efficiency'} | {'Traceability'} | {'Safety precaution'} | {'Debugging'}
| {'MISRA-C:2004 guidelines'} | {'Polyspace'}
Default: {''}

See Also

• “Application Objectives” in the Embedded Coder documentation.



4 Configuration Parameters for Simulink Models

4-26

• “Application Objectives” in the Simulink Coder documentation.

Check Model

Run the Code Generation Advisor checks.

Settings

1 Specify code generation objectives using the Select objective parameter (available
with GRT-based targets) or in the Configuration Set Objectives dialog box, by
clicking Set Objectives (available with ERT-based targets).

2 Click Check Model. The Code Generation Advisor runs the code generation
objectives checks and provide suggestions for changing your model to meet the
objectives.

Dependency

You must specify objectives before checking the model.

See Also

• “Application Objectives” in the Embedded Coder documentation.
• “Application Objectives” in the Simulink Coder documentation.

Check model before generating code

Choose whether to run Code Generation Advisor checks before generating code.

Settings

Default: Off

Off

Generates code without checking whether the model meets code generation
objectives. The code generation report summary and file headers indicate the
specified objectives and that the validation was not run.

On (proceed with warnings)

Checks whether the model meets code generation objectives using the Code
Generation Objectives checks in the Code Generation Advisor. If the Code Generation
Advisor reports a warning, the Simulink Coder software continues generating code.



 Code Generation Pane: General

4-27

The code generation report summary and file headers indicate the specified objectives
and the validation result.

On (stop for warnings)

Checks whether the model meets code generation objectives using the Code
Generation Objectives checks in the Code Generation Advisor. If the Code Generation
Advisor reports a warning, the Simulink Coder software does not continue generating
code.

Command-Line Information
Parameter: CheckMdlBeforeBuild
Type: string
Value: 'Off' | 'Warning' | 'Error'
Default: 'Off'

Recommended Settings

Application Setting

Debugging On (proceed with warnings) or On (stop
for warnings)

Traceability On (proceed with warnings) or On (stop
for warnings)

Efficiency On (proceed with warnings) or On (stop
for warnings)

Safety precaution On (proceed with warnings) or On (stop
for warnings)

See Also

• “Application Objectives” in the Embedded Coder documentation.
• “Application Objectives” in the Simulink Coder documentation.

Generate code only

Specify code generation versus an executable build.

Settings

Default: off



4 Configuration Parameters for Simulink Models

4-28

 On
The caption of the Build/Generate Code button becomes Generate Code. The
build process generates code and a makefile, but it does not invoke the make
command.

 Off
The caption of the Build/Generate Code button becomes Build. The build process
generates and compiles code, and creates an executable file.

Tip

Generate code only generates a makefile only if you select Generate makefile.

Dependency

This parameter changes the function of the Build/Generate Code button.

Command-Line Information
Parameter: GenCodeOnly
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Customize Post-Code-Generation Build Processing”

Build/Generate Code

Start the build or code generation process.



 Code Generation Pane: General

4-29

Tip

You can also start the build process by pressing Ctrl+B.

Dependency

When you select Generate code only, the caption of the Build button changes to
Generate Code.

Command-Line Information
Command: rtwbuild
Type: string
Value: 'modelname'

Recommended Settings

Application Setting

Debugging Build
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Initiate the Build Process”

Package code and artifacts

Specify whether to automatically package generated code and artifacts for relocation.

Settings

Default: off

 On
The build process runs the packNGo function after code generation to package
generated code and artifacts for relocation.

 Off



4 Configuration Parameters for Simulink Models

4-30

The build process does not run packNGo after code generation.

Dependency

Selecting this parameter enables Zip file name and clearing this parameter disables
Zip file name.

Command-Line Information
Parameter: PackageGeneratedCodeAndArtifacts
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Relocate Code to Another Development Environment”
• “packNGo Function Limitations”

Zip file name

Specify the name of the .zip file in which to package generated code and artifacts for
relocation.

Settings

Default: ''

You can enter the name of the zip file in which to package generated code and artifacts
for relocation. The file name can be specified with or without the .zip extension. If you
do not specify an extension or an extension other than .zip, the zip utility adds the
.zip extension. If a value is not specified, the build process uses the name model.zip,
where model is the name of the top model for which code is being generated.



 Code Generation Pane: General

4-31

Dependency

This parameter is enabled by Package code and artifacts.

Command-Line Information
Parameter: PackageName
Type: string
Value: valid name for a .zip file
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Relocate Code to Another Development Environment”
• “packNGo Function Limitations”



4 Configuration Parameters for Simulink Models

4-32

Code Generation Pane: Report

The Code Generation > Report pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT-based target.

The Code Generation > Report pane includes the following additional parameters
when the Simulink Coder product is installed on your system and you select an ERT-
based target. ERT-based target parameters require an Embedded Coder license when
generating code.

In this section...

“Code Generation: Report Tab Overview” on page 4-33
“Create code generation report” on page 4-33
“Open report automatically” on page 4-36
“Code-to-model” on page 4-37
“Model-to-code” on page 4-38



 Code Generation Pane: Report

4-33

In this section...

“Configure” on page 4-40
“Generate model Web view” on page 4-40
“Eliminated / virtual blocks” on page 4-41
“Traceable Simulink blocks” on page 4-42
“Traceable Stateflow objects” on page 4-43
“Traceable MATLAB functions” on page 4-44
“Static code metrics” on page 4-45
“Summarize which blocks triggered code replacements” on page 4-46

Code Generation: Report Tab Overview

Control the code generation report that the Simulink Coder software automatically
creates.

Configuration

To create a code generation report during the build process, select the Create code
generation report parameter.

See Also

• “Generate a Code Generation Report”
• “Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation Report
Extensions”.

• “Code Generation Pane: Report” on page 4-32

Create code generation report

Document generated code in an HTML report.

Settings

Default: Off

 On



4 Configuration Parameters for Simulink Models

4-34

Generates a summary of code generation source files in an HTML report. Places the
report files in an html subfolder within the build folder. In the report,

• The Summary section lists version and date information. The Configuration
Settings at the Time of Code Generation link opens a noneditable view of
the Configuration Parameters dialog that shows the Simulink model settings,
including TLC options, at the time of code generation.

• The Subsystem Report section contains information on nonvirtual subsystems
in the model.

• The Code Interface Report section provides information about the generated
code interface, including model entry point functions and input/output data
(requires an Embedded Coder license and the ERT target).

• The Traceability Report section allows you to account for Eliminated / Virtual
Blocks that are untraceable, versus the listed Traceable Simulink Blocks /
Stateflow Objects / MATLAB Scripts, providing a complete mapping between
model elements and code (requires an Embedded Coder license and the ERT
target).

• The Static Code Metrics Report section provides statistics of the generated
code. Metrics are estimated from static analysis of the generated code.

• The Code Replacements Report section allows you to account for code
replacement library (CRL) functions that were used during code generation,
providing a mapping between each replacement instance and the Simulink block
that triggered the replacement.

In the Generated Files section, you can click the names of source code files
generated from your model to view their contents in a MATLAB Web browser
window. In the displayed source code,

• Global variable instances are hyperlinked to their definitions.
• If you selected the traceability option Code-to-model, hyperlinks within the

displayed source code let you view the blocks or subsystems from which the code
was generated. Click on the hyperlinks to view the relevant blocks or subsystems
in a Simulink model window (requires an Embedded Coder license and the ERT
target).

• If you selected the traceability option Model-to-code, you can view the generated
code for a block in the model. To highlight a block's generated code in the HTML
report, right-click the block and select C/C++ Code > Navigate to C/C++ Code
(requires an Embedded Coder license and the ERT target).



 Code Generation Pane: Report

4-35

• If you set the Code coverage tool parameter on the Code Generation >
Verification pane, you can view the code coverage data and annotations in the
generated code in the HTML Code Generation Report (requires an Embedded
Coder license and the ERT target).

 Off
Does not generate a summary of files.

Dependency

This parameter enables and selects

• “Open report automatically” on page 4-36
• “Code-to-model” on page 4-37 (ERT target)

This parameter enables

• “Model-to-code” on page 4-38 (ERT target)
• “Eliminated / virtual blocks” on page 4-41 (ERT target)
• “Traceable Simulink blocks” on page 4-42 (ERT target)
• “Traceable Stateflow objects” on page 4-43 (ERT target)
• “Traceable MATLAB functions” on page 4-44 (ERT target)

.

Command-Line Information
Parameter: GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On



4 Configuration Parameters for Simulink Models

4-36

See Also

“Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation Report
Extensions”.

If you have an Embedded Coder license, see also “Code Coverage in SIL and PIL
Simulations”.

Open report automatically

Specify whether to display code generation reports automatically.

Settings
Default: Off

 On
Displays the code generation report automatically in a new browser window.

 Off
Does not display the code generation report, but the report is still available in the
html folder.

Dependency

This parameter is enabled and selected by Create code generation report.

Command-Line Information
Parameter: LaunchReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On



 Code Generation Pane: Report

4-37

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

“Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation Report
Extensions”.

Code-to-model

Include hyperlinks in the code generation report that link code to the corresponding
Simulink blocks, Stateflow objects, and MATLAB functions in the model diagram.

Settings

Default: Off

 On
Includes hyperlinks in the code generation report that link code to corresponding
Simulink blocks, Stateflow objects, and MATLAB functions in the model diagram.
The hyperlinks provide traceability for validating generated code against the source
model.

 Off
Omits hyperlinks from the generated report.

Tip

Clear this parameter to speed up code generation. For large models (containing over 1000
blocks), generation of hyperlinks can be time consuming.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled and selected by Create code generation report.



4 Configuration Parameters for Simulink Models

4-38

• You must select Include comments on the Code Generation > Comments pane to
use this parameter.

Command-Line Information
Parameter: IncludeHyperlinkInReport
Type: string
Value: 'on' | 'off
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

Model-to-code

Link Simulink blocks, Stateflow objects, and MATLAB functions in a model diagram to
corresponding code segments in a generated HTML report so that the generated code for
a block can be highlighted on request.

Settings

Default: Off

 On
Includes model-to-code highlighting support in the code generation report. To
highlight the generated code for a Simulink block, Stateflow object, or MATLAB
script in the code generation report, right-click the item and select C/C++ Code >
Navigate to C/C++ Code.

 Off
Omits model-to-code highlighting support from the generated report.



 Code Generation Pane: Report

4-39

Tip

Clear this parameter to speed up code generation. For large models (containing over 1000
blocks), generation of model-to-code highlighting support can be time consuming.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled when you select Create code generation report.
• This parameter selects:

• “Eliminated / virtual blocks” on page 4-41
• “Traceable Simulink blocks” on page 4-42
• “Traceable Stateflow objects” on page 4-43
• “Traceable MATLAB functions” on page 4-44

• You must select the following parameters to use this parameter:

• “Include comments” on the Code Generation > Comments pane
• At least one of the following:

• “Eliminated / virtual blocks” on page 4-41
• “Traceable Simulink blocks” on page 4-42
• “Traceable Stateflow objects” on page 4-43
• “Traceable MATLAB functions” on page 4-44

Command-Line Information
Parameter: GenerateTraceInfo
Type: Boolean
Value: on | off
Default: off

Recommended Settings

Application Setting

Debugging On
Traceability On



4 Configuration Parameters for Simulink Models

4-40

Application Setting

Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

Configure

Open the Model-to-code navigation dialog box. This dialog box provides a way for
you to specify a build folder containing previously-generated model code to highlight.
Applying your build folder selection will attempt to load traceability information from the
earlier build, for which Model-to-code must have been selected.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by “Model-to-code” on page 4-38.

See Also

“HTML Code Generation Report Extensions”

Generate model Web view

Include the model Web view in the code generation report to navigate between the code
and model within the same window. You can share your model and generated code
outside of the MATLAB environment. You must have a Simulink Report Generator™
license to include a “Web view” of the model in the code generation report.

Settings

Default: Off

 On
Include model Web view in the code generation report.

 Off



 Code Generation Pane: Report

4-41

Omit model Web view in the code generation report.

Command-Line Information
Parameter: GenerateWebview
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Web View of Model in Code Generation Report”

Eliminated / virtual blocks

Include summary of eliminated and virtual blocks in code generation report.

Settings

Default: Off

 On
Includes a summary of eliminated and virtual blocks in the code generation report.

 Off
Does not include a summary of eliminated and virtual blocks.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Create code generation report.



4 Configuration Parameters for Simulink Models

4-42

• This parameter is selected by Model-to-code.

Command-Line Information
Parameter: GenerateTraceReport
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

Traceable Simulink blocks

Include summary of Simulink blocks in code generation report.

Settings

Default: Off

 On
Includes a summary of Simulink blocks and the corresponding code location in the
code generation report.

 Off
Does not include a summary of Simulink blocks.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.



 Code Generation Pane: Report

4-43

• This parameter is enabled by Create code generation report.
• This parameter is selected by Model-to-code.

Command-Line Information
Parameter: GenerateTraceReportSl
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

Traceable Stateflow objects

Include summary of Stateflow objects in code generation report.

Settings

Default: Off

 On
Includes a summary of Stateflow objects and the corresponding code location in the
code generation report.

 Off
Does not include a summary of Stateflow objects.

Dependencies

• This parameter only appears for ERT-based targets.



4 Configuration Parameters for Simulink Models

4-44

• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Create code generation report.
• This parameter is selected by Model-to-code.

Command-Line Information
Parameter: GenerateTraceReportSf
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

“Traceability of Stateflow Objects in Generated Code”

Traceable MATLAB functions

Include summary of MATLAB functions in code generation report.

Settings

Default: Off

 On
Includes a summary of MATLAB functions and corresponding code locations in the
code generation report.

 Off
Does not include a summary of MATLAB functions.



 Code Generation Pane: Report

4-45

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Create code generation report.
• This parameter is selected by Model-to-code.

Command-Line Information
Parameter: GenerateTraceReportEml
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

Static code metrics

Include static code metrics report in the code generation report.

Settings

Default: Off

 On
Include static code metrics report in the code generation report. The static code
metrics report does not support the C++ target language.

 Off
Omit static code metrics report from the code generation report.



4 Configuration Parameters for Simulink Models

4-46

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled when you select Create code generation report.

Command-Line Information
Parameter: GenerateCodeMetricsReport
Type: Boolean
Value: on | off
Default: off

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Static Code Metrics”

Summarize which blocks triggered code replacements

Include code replacement report summarizing replacement functions used and their
associated blocks in the code generation report.

Settings

Default: Off

 On
Include code replacement report in the code generation report.

Note: Selecting this option also generates code replacement trace information
for viewing in the Trace Information tab of the Code Replacement Viewer. The



 Code Generation Pane: Report

4-47

generated information can help you determine why an expected code replacement did
not occur.

 Off
Omit code replacement report from the code generation report.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled when you select Create code generation report.

Command-Line Information
Parameter: GenerateCodeReplacementReport
Type: Boolean
Value: on | off
Default: off

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Analyze Code Replacements in the Generated Code”
• “Trace Code Replacements Generated Using Your Code Replacement Library”
• “Determine Why Code Replacement Functions Were Not Used”



4 Configuration Parameters for Simulink Models

4-48

Code Generation Pane: Comments

The Code Generation > Comments pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT-based target.

The Code Generation > Comments pane includes additional parameters when the
Simulink Coder product is installed on your system and you select an ERT-based target.
ERT-based target parameters require an Embedded Coder license when generating code.



 Code Generation Pane: Comments

4-49

In this section...

“Code Generation: Comments Tab Overview” on page 4-49
“Include comments” on page 4-49
“Simulink block / Stateflow object comments” on page 4-50
“MATLAB source code as comments” on page 4-51
“Show eliminated blocks” on page 4-52
“Verbose comments for SimulinkGlobal storage class” on page 4-53
“Operator annotations” on page 4-54
“Simulink block descriptions” on page 4-55
“Simulink data object descriptions” on page 4-56
“Custom comments (MPT objects only)” on page 4-57
“Custom comments function” on page 4-59
“Stateflow object descriptions” on page 4-60
“Requirements in block comments” on page 4-61
“MATLAB function help text” on page 4-62

Code Generation: Comments Tab Overview

Control the comments that the Simulink Coder software automatically creates and
inserts into the generated code.

See Also

“Code Generation Pane: Comments” on page 4-48

Include comments

Specify which comments are in generated files.

Settings

Default: on

 On



4 Configuration Parameters for Simulink Models

4-50

Places comments in the generated files based on the selections in the Auto
generated comments pane.

 Off
Omits comments from the generated files.

Note: This parameter does not apply to copyright notice comments in the generated
code.

Dependencies

This parameter enables:

• Simulink block / Stateflow object comments
• MATLAB source code as comments
• Show eliminated blocks
• Verbose comments for SimulinkGlobal storage class

Command-Line Information
Parameter: GenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

Simulink block / Stateflow object comments

Specify whether to insert Simulink block and Stateflow object comments.



 Code Generation Pane: Comments

4-51

Settings

Default: on

 On
Inserts automatically generated comments that describe a block's code and objects.
The comments precede that code in the generated file.

 Off
Suppresses comments.

Dependency

This parameter is enabled by Include comments.

Command-Line Information
Parameter: SimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

MATLAB source code as comments

Specify whether to insert MATLAB source code as comments.

Settings

Default: off

 On
Inserts MATLAB source code as comments in the generated code. The comments
precede the associated generated code.



4 Configuration Parameters for Simulink Models

4-52

Includes the function signature in the function banner.

 Off
Suppresses comments and does not include the function signature in the function
banner.

Dependency

This parameter is enabled by Include comments.

Command-Line Information
Parameter: MATLABSourceComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“Include MATLAB Code as Comments in Generated Code”

Show eliminated blocks

Specify whether to insert eliminated block's comments.

Settings

Default: off

 On
Inserts statements in the generated code from blocks eliminated as the result of
optimizations (such as parameter inlining).



 Code Generation Pane: Comments

4-53

 Off
Suppresses statements.

Dependency

This parameter is enabled by Include comments.

Command-Line Information
Parameter: ShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

Verbose comments for SimulinkGlobal storage class

You can control the generation of comments in the model parameter structure
declaration in model_prm.h. Parameter comments indicate parameter variable names
and the names of source blocks.

Settings

Default: off

 On
Generates parameter comments regardless of the number of parameters.

 Off
Generates parameter comments if less than 1000 parameters are declared. This
reduces the size of the generated file for models with a large number of parameters.



4 Configuration Parameters for Simulink Models

4-54

Dependency

This parameter is enabled by Include comments.

Command-Line Information
Parameter: ForceParamTrailComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

Operator annotations

Specify whether to include operator annotations for Polyspace in the generated code as
comments.

Settings

Default: Off

 On
Includes operator annotations in the generated code.

 Off
Does not include operator annotations in the generated code.

Tips

• These annotations help document overflow behavior that is due to the way the
Embedded Coder software implements an operation. These operators cannot be traced
to an overflow in the design.



 Code Generation Pane: Comments

4-55

• Justify operators that the Polyspace software cannot prove. When this option
is enabled, if the Embedded Coder software uses one of these operators, it adds
annotations to the generated code to justify the operators for Polyspace.

• Embedded Coder cannot justify operators that result from the design.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Include comments.

Command-Line Information
Parameter: OperatorAnnotations
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability On
Efficiency No impact
Safety precaution On

See Also

“Code Annotation for Justifying Polyspace Checks”

Simulink block descriptions

Specify whether to insert descriptions of blocks into generated code as comments.

Settings

Default: off

 On



4 Configuration Parameters for Simulink Models

4-56

Includes the following comments in the generated code for each block in the model,
with the exception of virtual blocks and blocks removed due to block reduction:

• The block name at the start of the code, regardless of whether you select
Simulink block / Stateflow object comments

• Text specified in the Description field of each Block Properties dialog box

The block names and descriptions can include international (non-US-ASCII)
characters.

 Off
Suppresses the generation of block name and description comments in the generated
code.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: InsertBlockDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

“International Character Support”

Simulink data object descriptions



 Code Generation Pane: Comments

4-57

Specify whether to insert descriptions of Simulink data objects into generated code as
comments.

Settings

Default: off

 On
Inserts contents of the Description field in the Model Explorer Object Properties
pane for each Simulink data object (signal, parameter, and bus objects) in the
generated code as comments.

The descriptions can include international (non-US-ASCII) characters.

 Off
Suppresses the generation of data object property descriptions as comments in the
generated code.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: SimulinkDataObjDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

Custom comments (MPT objects only)



4 Configuration Parameters for Simulink Models

4-58

Specify whether to include custom comments for module packaging tool (MPT) signal and
parameter data objects in generated code.

Settings

Default: off

 On
Inserts comments just above the identifiers for signal and parameter MPT objects in
generated code.

 Off
Suppresses the generation of custom comments for signal and parameter identifiers.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter requires that you include the comments in a function defined in

a MATLAB language file or TLC file that you specify with Custom comments
function.

Command-Line Information
Parameter: EnableCustomComments
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

“Add Custom Comments for Signal or Parameter Identifiers”



 Code Generation Pane: Comments

4-59

Custom comments function

Specify a file that contains comments to be included in generated code for module
packing tool (MPT) signal and parameter data objects

Settings

Default: ''

Enter the name of the MATLAB language file or TLC file for the function that includes
the comments to be inserted of your MPT signal and parameter objects. You can specify
the file name directly or click Browse and search for a file.

Tip

You might use this option to insert comments that document some or all of the property
values of an object.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Custom comments (MPT objects only).

Command-Line Information
Parameter: CustomCommentsFcn
Type: string
Value: valid file name
Default: ''

Recommended Settings

Application Setting

Debugging Valid file name
Traceability Valid file name
Efficiency No impact
Safety precaution No impact

See Also

“Add Custom Comments for Signal or Parameter Identifiers”



4 Configuration Parameters for Simulink Models

4-60

Stateflow object descriptions

Specify whether to insert descriptions of Stateflow objects into generated code as
comments.

Settings

Default: off

 On
Inserts descriptions of Stateflow states, charts, transitions, and graphical functions
into generated code as comments. The descriptions come from the Description field
in Object Properties pane in the Model Explorer for these Stateflow objects. The
comments appear just above the code generated for each object.

The descriptions can include international (non-US-ASCII) characters.

 Off
Suppresses the generation of comments for Stateflow objects.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires a Stateflow license.

Command-Line Information
Parameter: SFDataObjDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact



 Code Generation Pane: Comments

4-61

See Also

“International Character Support”

Requirements in block comments

Specify whether to include requirement descriptions assigned to Simulink blocks in
generated code as comments.

Settings

Default: off

 On
Inserts the requirement descriptions that you assign to Simulink blocks into the
generated code as comments. The Simulink Coder software includes the requirement
descriptions in the generated code in the following locations.

Model Element Requirement Description Location
Model In the main header file model.h
Nonvirtual subsystems At the call site for the subsystem
Virtual subsystems At the call site of the closest nonvirtual parent

subsystem. If a virtual subsystem does not have a
nonvirtual parent, requirement descriptions are
located in the main header file for the model, model.h.

Nonsubsystem blocks In the generated code for the block

The requirement text can include international (non-US-ASCII) characters.

 Off
Suppresses the generation of comments for block requirement descriptions.

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires Embedded Coder and Simulink Verification and Validation™

licenses when generating code.



4 Configuration Parameters for Simulink Models

4-62

Tips

If you use an external .req file to store your requirement links, to avoid stale comments
in generated code, before code generation, you must save any change in your requirement
links.

Command-Line Information
Parameter: ReqsInCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“How Requirements Information Is Included in Generated Code” in the Simulink
Verification and Validation documentation

MATLAB function help text

Specify whether to include MATLAB function help text in the function banner.

Settings

Default: off

 On
Inserts MATLAB function help text in the function banner.

 Off
Inserts MATLAB function help text in the body of the function.



 Code Generation Pane: Comments

4-63

Dependency

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Include comments.

Command-Line Information
Parameter: MATLABFcnDesc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

“Including MATLAB Function Help Text in the Function Banner”



4 Configuration Parameters for Simulink Models

4-64

Code Generation Pane: Symbols

The Code Generation > Symbols pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT-based target.

The Code Generation > Symbols pane includes additional parameters when the
Simulink Coder product is installed on your system and you select an ERT-based target.
ERT-based target parameters require an Embedded Coder license when generating code.



 Code Generation Pane: Symbols

4-65



4 Configuration Parameters for Simulink Models

4-66

In this section...

“Code Generation: Symbols Tab Overview” on page 4-66
“Global variables” on page 4-67
“Global types” on page 4-68
“Field name of global types” on page 4-70
“Subsystem methods” on page 4-72
“Subsystem method arguments” on page 4-74
“Local temporary variables” on page 4-76
“Local block output variables” on page 4-78
“Constant macros” on page 4-79
“Shared utilities” on page 4-81
“Minimum mangle length” on page 4-82
“Maximum identifier length” on page 4-84
“System-generated identifiers” on page 4-85
“Generate scalar inlined parameter as” on page 4-89
“Signal naming” on page 4-90
“M-function” on page 4-91
“Parameter naming” on page 4-93
“#define naming” on page 4-94
“Use the same reserved names as Simulation Target” on page 4-95
“Reserved names” on page 4-96

Code Generation: Symbols Tab Overview

Select the automatically generated identifier naming rules.

See Also

• “Code Generation Pane: Symbols” on page 4-64
• “Construction of Generated Identifiers”
• “Identifier Name Collisions and Mangling”
• “Specify Identifier Length to Avoid Naming Collisions”



 Code Generation Pane: Symbols

4-67

• “Specify Reserved Names for Generated Identifiers”
• “Customize Generated Identifier Naming Rules” in the Embedded Coder

documentation

Global variables

Customize generated global variable identifiers.

Settings

Default: $R$N$M

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.
$R Insert root model name into identifier, replacing unsupported

characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and $M tokens.

• When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator



4 Configuration Parameters for Simulink Models

4-68

preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

• This parameter setting only determines the name of objects, such as signals and
parameters, if the object is set to Auto.

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrGlobalVar
Type: string
Value: valid combination of tokens
Default: $R$N$M

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $R$N$M

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Avoid Identifier Name Collisions with Referenced Models” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Global types



 Code Generation Pane: Symbols

4-69

Customize generated global type identifiers.

Settings

Default: $N$R$M_T

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.
$R Insert root model name into identifier, replacing unsupported

characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and $M tokens.

• When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

• Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier length
setting does not apply to type definitions. If you specify $R, the code generator
includes the model name in the typedef.



4 Configuration Parameters for Simulink Models

4-70

• This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrType
Type: string
Value: valid combination of tokens
Default: $N$R$M_T

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $N$R$M_T

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Avoid Identifier Name Collisions with Referenced Models” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Field name of global types

Customize generated field names of global types.

Settings

Default: $N$M



 Code Generation Pane: Symbols

4-71

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$A Insert data type acronym into signal and work vector identifiers. For
example, i32 for int32_t.

$H Insert tag indicating system hierarchy level. For root-level blocks, the
tag is the string root_. For blocks at the subsystem level, the tag is
of the form sN_, where N is a unique system number assigned by the
Simulink software.

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• The Maximum identifier length setting does not apply to type definitions.
• This option does not impact objects (such as signals and parameters) that have a

storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrField
Type: string
Value: valid combination of tokens
Default: $N$M



4 Configuration Parameters for Simulink Models

4-72

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $N$M

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Subsystem methods

Customize generated function names for reusable subsystems.

Settings

Default: $R$N$M$F

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$F Insert method name (for example, _Update for update method).
$H Insert tag indicating system hierarchy level. For root-level blocks, the

tag is the string root_. For blocks at the subsystem level, the tag is
of the form sN_, where N is a unique system number assigned by the
Simulink software.

Empty for Stateflow functions.
$M Insert name mangling string if required to avoid naming collisions.

Required.



 Code Generation Pane: Symbols

4-73

Token Description

$N Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.

$R Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and $M tokens.

• When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

• Name mangling conventions do not apply to type names (that is, typedef
statements) generated for global data types. The Maximum identifier length
setting does not apply to type definitions. If you specify $R, the code generator
includes the model name in the typedef.

• This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrFcn
Type: string
Value: valid combination of tokens
Default: $R$N$M$F



4 Configuration Parameters for Simulink Models

4-74

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $R$N$M$F

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Avoid Identifier Name Collisions with Referenced Models” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Subsystem method arguments

Customize generated function argument names for reusable subsystems.

Settings

Enter a macro string that specifies whether, and in what order, certain substrings
are to be included in the generated argument name. The macro string can include a
combination of the following format tokens.

Token Description

$I Insert an u if the argument is an input. Insert a y if the argument is an
output.

Optional.
$M Insert name mangling string if required to avoid naming collisions.

Required.



 Code Generation Pane: Symbols

4-75

Token Description

$N Insert name of object (block, signal or signal object, state, parameter or
parameter object) for which identifier is being generated.

Recommended to maximize readability of generated code.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

Dependencies

This parameter:

• Appears only for ERT-based targets.
• Requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrFcnArg
Type: string
Value: valid combination of tokens
Default: rt$I$N$M

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combinations of tokens
Efficiency No impact
Safety precaution rt$I$N$M

See Also

• “Code Generation Pane: Symbols” on page 4-64



4 Configuration Parameters for Simulink Models

4-76

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Local temporary variables

Customize generated local temporary variable identifiers.

Settings

Default: $N$M

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$A Insert data type acronym (for example, i32 for integers) into signal and
work vector identifiers.

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter, or

parameter object) for which identifier is generated.
$R Insert root model name into identifier, replacing unsupported

characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions. One way is to avoid using default block names (for example,
Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate. Reserve at least three characters
for a name mangling string.



 Code Generation Pane: Symbols

4-77

• If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and $M tokens.

• When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

• This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrTmpVar
Type: string
Value: valid combination of tokens
Default: $N$M

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $N$M

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Avoid Identifier Name Collisions with Referenced Models” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation



4 Configuration Parameters for Simulink Models

4-78

Local block output variables

Customize generated local block output variable identifiers.

Settings

Default: rtb_$N$M

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$A Insert data type acronym (for example, i32 for integers) into signal and
work vector identifiers.

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrBlkIO
Type: string



 Code Generation Pane: Symbols

4-79

Value: valid combination of tokens
Default: rtb_$N$M

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution rtb_$N$M

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Constant macros

Customize generated constant macro identifiers.

Settings

Default: $R$N$M

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$M Insert name mangling string if required to avoid naming collisions.

Required.
$N Insert name of object (block, signal or signal object, state, parameter or

parameter object) for which identifier is being generated.



4 Configuration Parameters for Simulink Models

4-80

Token Description

$R Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character.

Required for model referencing.

Tips

• Avoid name collisions in general. One way is to avoid using default block names (for
example, Gain1, Gain2...) when your model has many blocks of the same type.

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers you expect to generate. Reserve at least three characters for a
name mangling string.

• If you specify $R, the value you specify for Maximum identifier length must be
large enough to accommodate full expansions of the $R and $M tokens.

• When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the code generator
preserves the identifier from the referenced model. Name mangling is performed on
the identifier in the higher-level model.

• This option does not impact objects (such as signals and parameters) that have a
storage class other than Auto (such as ImportedExtern or ExportedGlobal).

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrMacro
Type: string
Value: valid combination of tokens
Default: $R$N$M

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens



 Code Generation Pane: Symbols

4-81

Application Setting

Efficiency No impact
Safety precaution $R$N$M

See Also

• “Identifier Format Control” in the Embedded Coder documentation
• “Control Name Mangling in Generated Identifiers” in the Embedded Coder

documentation
• “Avoid Identifier Name Collisions with Referenced Models” in the Embedded Coder

documentation
• “Identifier Format Control Parameters Limitations” in the Embedded Coder

documentation

Shared utilities

Customize shared utility identifiers.

Settings

Default: $N$C

Customize generated shared utility identifier names.

Enter a macro string that specifies whether, and in what order, certain substrings are to
be included in the generated identifier. The macro string can include a combination of the
following format tokens.

Token Description

$N Insert name of object (block, signal or signal object, state, parameter, or
parameter object) for which identifier is generated. Optional.

$C Insert eight-character conditional checksum when $N is not specified or
the Maximum identifier length does not accommodate the full length
of $N. Required.

Tips

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate.



4 Configuration Parameters for Simulink Models

4-82

• The checksum token $C is required. If $C is specified without $N, the checksum is
included in the identifier name. Otherwise, the code generator includes the checksum
when necessary to prevent name collisions.

• If you specify $N, then the checksum is only included in the name when the identifier
length is too short to accommodate the fully expanded format string. The code
generator includes the checksum and truncates $N until the length is equal to
Maximum identifier length. When necessary, an underscore is inserted to separate
tokens.

• Descriptive text helps make the identifier name more accessible.

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CustomSymbolStrUtil
Type: string
Value: valid combination of tokens
Default: $N$C

Recommended Settings

Application Setting

Debugging No impact
Traceability Valid combination of tokens
Efficiency No impact
Safety precaution $N$C

See Also

• “Code Generation Pane: Symbols”
• “Identifier Format Control”
• “Exceptions to Identifier Formatting Conventions”

Minimum mangle length



 Code Generation Pane: Symbols

4-83

Increase the minimum number of characters for generating name mangling strings to
help avoid name collisions.

Settings

Default: 1

Specify an integer value that indicates the minimum number of characters the code
generator uses when generating a name mangling string. The maximum possible value is
15. The minimum value automatically increases during code generation as a function of
the number of collisions. A larger value reduces the chance of identifier disturbance when
you modify the model.

Tips

• Minimize disturbance to the generated code during development by specifying a value
of 4. This value is conservative. It allows for over 1.5 million collisions for a particular
identifier before the mangle length increases.

• Set the value to reserve at least three characters for the name mangling string.
The length of the name mangling string increases as the number of name collisions
increases.

Dependency

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: MangleLength
Type: integer
Value: value between 1 and 15
Default: 1

Recommended Settings

Application Setting

Debugging No impact
Traceability 1
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-84

See Also

• “Control Name Mangling in Generated Identifiers” in the Embedded Coder
documentation

• “Maintain Traceability for Generated Identifiers” in the Embedded Coder
documentation

Maximum identifier length

Specify maximum number of characters in generated function, type definition, variable
names.

Settings

Default: 31
Minimum: 31
Maximum: 256

You can use this parameter to limit the number of characters in function, type definition,
and variable names.

Tips

• Consider increasing identifier length for models having a deep hierarchical structure.
• When generating code from a model that uses model referencing, the Maximum

identifier length must be large enough to accommodate the root model name, and
possibly, the name mangling string. A code generation error occurs if Maximum
identifier length is too small.

• This parameter must be the same for both top-level and referenced models.
• When a name conflict occurs between a symbol within the scope of a higher level

model and a symbol within the scope of a referenced model, the symbol from the
referenced model is preserved. Name mangling is performed on the symbol from the
higher level model.

Command-Line Information
Parameter: MaxIdLength
Type: integer
Value: valid value
Default: 31



 Code Generation Pane: Symbols

4-85

Recommended Settings

Application Setting

Debugging Valid value
Traceability >30
Efficiency No impact
Safety precaution >30

See Also

• “Construction of Generated Identifiers”
• “Identifier Name Collisions and Mangling”
• “Identifier Format Control” in the Embedded Coder documentation

System-generated identifiers

Specify whether the code generator uses shorter, more consistent names for the $N token
in system-generated identifiers.

Settings

Default: Shortened

Classic

Generate longer identifier names, which are used by default before R2013a, for the
$N token. For example, for a model named sym, if:

• “Global variables” is $N$R$M, the block state identifier is sym_DWork.
• “Global types” is $R$N$M, the block state type is a structure named D_Work_sym.

Shortened

Shorten identifier names for the $N token to allow more space for user names. This
option provides a more predictable and consistent naming system that uses camel
case, no underscores or plurals, and consistent abbreviations for both a type and a
variable. For example, for a model named sym, if:

• “Global variables” is $N$R$M, the block state identifier is sym_DW.
• “Global types” is $R$N$M, the block state type is a structure named DW_sym.



4 Configuration Parameters for Simulink Models

4-86

System-generated identifiers per model

Classic Shortened Data Representation Description

BlockIO, B B Type Block signals of the
system

ExternalInputs ExtU Type Block input data for
root system

ExternalInputSizes ExtUSize Type Size of block input data
for the root system
(used when inputs are
variable dimensions)

ExternalOutputs ExtY Type Block output data for
the root system

ExternalOutputSizesExtYSize Type Size of block output
data for the root system

Parameters P Type Parameters for the
system

ConstBlockIO ConstB Const Type Block inputs and
outputs that are
constants

MachineLocalData,

Machine

MachLocal Const Type, Global
Variable

Used by ERT S-
function targets

ConstParam, ConstP ConstP Const Type, Global
Variable

Constant parameters in
the system

ConstParamWithInit,

ConstWithInitP

ConstInitP Const Type, Global
Variable

Initialization data for
constant parameters in
the system

D_Work, DWork DW Type, Global Variable Block states in the
system

MassMatrixGlobal MassMatrix Type, Global Variable Used for physical
modeling blocks

PrevZCSigStates,

PrevZCSigState

PrevZCX Type, Global Variable Previous zero-crossing
signal state

ContinuousStates,

X

X Type, Global Variable Continuous states



 Code Generation Pane: Symbols

4-87

Classic Shortened Data Representation Description

StateDisabled,

Xdis

XDis Type, Global Variable Status of an enabled
subsystem

StateDerivatives,

Xdot

XDot Type, Global Variable Derivatives of
continuous states at
each time step

ZCSignalValues,

ZCSignalValue

ZCV Type, Global Variable Zero-crossing signals

DefaultParameters DefaultP Global Variable Default parameters in
the system

GlobalTID GlobalTID Global Variable Used for sample time
for states in referenced
models

InvariantSignals Invariant Global Variable Invariant signals
NSTAGES NSTAGES Global Variable Solver macro
Object Obj Global Variable Used by ERT C++ code

generation to refer
to referenced model
objects

TimingBridge TimingBrdg Global Variable Timing information
stored in different data
structures

U U Global Variable Input data
USize USize Global Variable Size of input data
Y Y Global Variable Output data
YSize YSize Global Variable Size of output data

System-generated identifier names per referenced model or reusable subsystem

Classic Shortened Data Representation Description

rtB, B B Type, Global Variable Block signals of the
system



4 Configuration Parameters for Simulink Models

4-88

Classic Shortened Data Representation Description

rtC, C ConstB Type, Global Variable Block inputs and
outputs that are
constants

rtDW, DW DW Type, Global Variable Block states in the
system

rtMdlrefDWork,

MdlrefDWork

MdlRefDW Type, Global Variable Block states in
referenced model

rtP, P P Type, Global Variable Parameters for the
system

rtRTM, RTM RTM Type, Global Variable RT_Model structure
rtX, X X Type, Global Variable Continuous states in

model reference
rtXdis, Xdis XDis Type, Global Variable Status of an enabled

subsystem
rtXdot, Xdot XDot Type, Global Variable Derivatives of the S-

function's continuous
states at each time step

rtZCE, ZCE ZCE Type, Global Variable Zero-crossing enabled
rtZCSV, ZCSV ZCV Type, Global Variable Zero-crossing signal

values

Dependencies

• This parameter appears only for ERT-based targets.
• When generating code, this parameter requires an Embedded Coder license.

Command-Line Information
Parameter: InternalIdentifier
Type: string
Value: Classic | Shortened
Default: Shortened



 Code Generation Pane: Symbols

4-89

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Construction of Generated Identifiers”
• “Identifier Name Collisions and Mangling”
• “Specify Identifier Length to Avoid Naming Collisions”
• “Specify Reserved Names for Generated Identifiers”
• “Customize Generated Identifier Naming Rules” in the Embedded Coder

documentation
• “Identifier Format Control” in the Embedded Coder documentation

Generate scalar inlined parameter as

Control expression of scalar inlined parameter values in the generated code.

Settings

Default: Literals

Literals

Generates scalar inlined parameters as numeric constants. This setting can help
with debugging TLC code, as it makes it easy to search for parameter values in the
generated code.

Macros

Generates scalar inlined parameters as variables with #define macros. This setting
makes generated code more readable.

Dependencies

• This parameter appears only for ERT-based targets.



4 Configuration Parameters for Simulink Models

4-90

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: InlinedPrmAccess
Type: string
Value: Literals | Macros
Default: Literals

Recommended Settings

Application Setting

Debugging No impact
Traceability Macros

Efficiency Literals

Safety precaution No impact

Signal naming

Specify rules for naming signals in generated code.

Settings

Default: None

None

Does not change signal names when creating corresponding identifiers in generated
code. Signal identifiers in the generated code match the signal names that appear in
the model.

Force upper case

Uses uppercase characters when creating identifiers for signal names in the
generated code.

Force lower case

Uses lowercase characters when creating identifiers for signal names in the
generated code.

Custom M-function



 Code Generation Pane: Symbols

4-91

Uses the MATLAB function specified with the M-function parameter to create
identifiers for signal names in the generated code.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• Setting this parameter to Custom M-function enables M-function.
• This parameter must be the same for top-level and referenced models.
• If you give a value to the Alias parameter of an MPT.Signal or Simulink.Signal

data object, that value overrides the specification of the Signal naming parameter.

Limitation

This parameter does not impact signal names that are specified by an embedded signal
object created using the Code Generation tab of a Signal Properties dialog box.
See “Custom Storage Classes Using Embedded Signal Objects” for information about
embedded signal objects.

Command-Line Information
Parameter: SignalNamingRule
Type: string
Value: None | UpperCase | LowerCase | Custom
Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case

Efficiency No impact
Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder documentation
• “Programming Scripts and Functions” in the MATLAB documentation

M-function



4 Configuration Parameters for Simulink Models

4-92

Specify rule for naming identifiers in generated code.

Settings

Default: ''

Enter the name of a MATLAB language file that contains the naming rule to be applied
to signal, parameter, or #define parameter identifiers in generated code. Examples of
rules you might program in such a MATLAB function include:

• Remove underscore characters from signal names.
• Add an underscore before uppercase characters in parameter names.
• Make identifiers uppercase in generated code.

Tip

The MATLAB language file must be in the MATLAB path.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by Signal naming.
• This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: SignalNamingFcn
Type: string
Value: MATLAB language file
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



 Code Generation Pane: Symbols

4-93

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder documentation
• “Programming Scripts and Functions” in the MATLAB documentation

Parameter naming

Specify rule for naming parameters in generated code.

Settings

Default: None

None

Does not change parameter names when creating corresponding identifiers in
generated code. Parameter identifiers in the generated code match the parameter
names that appear in the model.

Force upper case

Uses uppercase characters when creating identifiers for parameter names in the
generated code.

Force lower case

Uses lowercase characters when creating identifiers for parameter names in the
generated code.

Custom M-function

Uses the MATLAB function specified with the M-function parameter to create
identifiers for parameter names in the generated code.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• Setting this parameter to Custom M-function enables M-function.
• This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: ParamNamingRule
Type: string
Value: None | UpperCase | LowerCase | Custom



4 Configuration Parameters for Simulink Models

4-94

Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case

Efficiency No impact
Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder documentation
• “Programming Scripts and Functions” in the MATLAB documentation

#define naming

Specify rule for naming #define parameters (defined with storage class Define
(Custom)) in generated code.

Settings

Default: None

None

Does not change #define parameter names when creating corresponding identifiers
in generated code. Parameter identifiers in the generated code match the parameter
names that appear in the model.

Force upper case

Uses uppercase characters when creating identifiers for #define parameter names
in the generated code.

Force lower case

Uses lowercase characters when creating identifiers for #define parameter names
in the generated code.

Custom M-function

Uses the MATLAB function specified with the M-function parameter to create
identifiers for #define parameter names in the generated code.



 Code Generation Pane: Symbols

4-95

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• Setting this parameter to Custom M-function enables M-function.
• This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: DefineNamingRule
Type: string
Value: None | UpperCase | LowerCase | Custom
Default: None

Recommended Settings

Application Setting

Debugging No impact
Traceability Force upper case

Efficiency No impact
Safety precaution No impact

See Also

• “Apply Naming Rules to Identifiers Globally” in the Embedded Coder documentation
• “Programming Scripts and Functions” in the MATLAB documentation

Use the same reserved names as Simulation Target

Specify whether to use the same reserved names as those specified in the Simulation
Target > Symbols pane.

Settings

Default: Off

 On
Enables using the same reserved names as those specified in the Simulation Target
> Symbols pane.



4 Configuration Parameters for Simulink Models

4-96

 Off
Disables using the same reserved names as those specified in the Simulation
Target > Symbols pane.

Command-Line Information
Parameter: UseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Reserved names

Enter the names of variables or functions in the generated code that match the names of
variables or functions specified in custom code.

Settings

Default: {}

This action changes the names of variables or functions in the generated code to avoid
name conflicts with identifiers in custom code. Reserved names must be shorter than 256
characters.

Tips

• Do not enter Simulink Coder keywords since these names cannot be changed in the
generated code. For a list of keywords to avoid, see “Reserved Keywords”.

• Start each reserved name with a letter or an underscore to prevent error messages.
• Each reserved name must contain only letters, numbers, or underscores.
• Separate the reserved names using commas or spaces.



 Code Generation Pane: Symbols

4-97

• You can also specify reserved names by using the command line:

config_param_object.set_param('ReservedNameArray', {'abc','xyz'})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information
Parameter: ReservedNameArray
Type: string array
Value: reserved names shorter than 256 characters
Default: {}

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-98

Code Generation Pane: Custom Code

The Code Generation > Custom Code pane includes the following parameters when
the Simulink Coder product is installed on your system and you select a GRT- or ERT-
based target.



 Code Generation Pane: Custom Code

4-99



4 Configuration Parameters for Simulink Models

4-100

In this section...

“Code Generation: Custom Code Tab Overview” on page 4-100
“Use the same custom code settings as Simulation Target” on page 4-100
“Use local custom code settings (do not inherit from main model)” on page 4-101
“Source file” on page 4-102
“Header file” on page 4-103
“Initialize function” on page 4-104
“Terminate function” on page 4-105
“Include directories” on page 4-105
“Source files” on page 4-107
“Libraries” on page 4-108

Code Generation: Custom Code Tab Overview

Enter custom code to include in generated model files and create a list of additional
folders, source files, and libraries to use when building the model.

Configuration

1 Select the type of information to include from the list on the left side of the pane.
2 Enter custom code or enter a string to identify a folder, source file, or library.
3 Click Apply.

See Also

• “Configure Model for External Code Integration”
• “Code Generation Pane: Custom Code” on page 4-98

Use the same custom code settings as Simulation Target

Specify whether to use the same custom code settings as those in the Simulation
Target > Custom Code pane.

Settings

Default: Off



 Code Generation Pane: Custom Code

4-101

 On
Enables using the same custom code settings as those in the Simulation Target >
Custom Code pane.

 Off
Disables using the same custom code settings as those in the Simulation Target >
Custom Code pane.

Command-Line Information
Parameter: RTWUseSimCustomCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Use local custom code settings (do not inherit from main model)

Specify if a library model can use custom code settings that are unique from the main
model.

Settings

Default: Off

 On
Enables a library model to use custom code settings that are unique from the main
model.



4 Configuration Parameters for Simulink Models

4-102

 Off
Disables a library model from using custom code settings that are unique from the
main model.

Dependency

This parameter is available only for library models that contain MATLAB Function
blocks, Stateflow charts, or Truth Table blocks.

Command-Line Information
Parameter: RTWUseLocalCustomCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Source file

Specify custom code to include near the top of the generated model source file.

Settings

Default:''

The code generator places code near the top of the generated model.c or model.cpp file,
outside of any function.

Command-Line Information
Parameter: CustomSourceCode



 Code Generation Pane: Custom Code

4-103

Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Header file

Specify custom code to include near the top of the generated model header file.

Settings

Default:''

The Simulink Coder software places this code near the top of the generated model.h
header file. If you are including a header file, in your custom header file add #ifndef
code. This avoids multiple inclusions. For example, in rtwtypes.h the following
#include guards are added:

#ifndef RTW_HEADER_rtwtypes_h_

#define RTW_HEADER_rtwtypes_h_

...

#endif /* RTW_HEADER_rtwtypes_h_ */

Command-Line Information
Parameter: CustomHeaderCode
Type: string
Value: C code
Default: ''



4 Configuration Parameters for Simulink Models

4-104

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Initialize function

Specify custom code to include in the generated model initialize function.

Settings

Default: ''

The Simulink Coder software places code inside the model's initialize function in the
model.c or model.cpp file.

Command-Line Information
Parameter: CustomInitializer
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



 Code Generation Pane: Custom Code

4-105

See Also

“Configure Model for External Code Integration”

Terminate function

Specify custom code to include in the generated model terminate function.

Settings

Default: ''

Specify code to appear in the model's generated terminate function in the model.c or
model.cpp file.

Dependency

A terminate function is generated only if you select the Terminate function required
check box on the Code Generation > Interface pane.

Command-Line Information
Parameter: CustomTerminator
Type: string
Value: C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Include directories



4 Configuration Parameters for Simulink Models

4-106

Specify a list of include folders to add to the include path.

Settings

Default:''

Enter a space-separated list of include folders to add to the include path when compiling
the generated code.

• Specify absolute or relative paths to the folders.
• Relative paths must be relative to the folder containing your model files, not relative

to the build folder.
• The order in which you specify the folders is the order in which they are searched for

header, source, and library files.

Note: If you specify a Windows path string containing one or more spaces, you must
enclose the string in double quotes. For example, the second and third path strings in the
Include directories entry below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter CustomInclude, each path string
containing spaces must be separately double-quoted within the single-quoted third
argument string, for example,

>> set_param('mymodel', 'CustomInclude', ...

             'C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information
Parameter: CustomInclude
Type: string
Value: folder path
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact



 Code Generation Pane: Custom Code

4-107

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Source files

Specify a list of additional source files to compile and link with the generated code.

Settings

Default: ''

Enter a space-separated list of source files to compile and link with the generated code.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

You can specify just the file name if the file is in the current MATLAB folder or in one of
the include folders.

Command-Line Information
Parameter: CustomSource
Type: string
Value: file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact



4 Configuration Parameters for Simulink Models

4-108

Application Setting

Safety precaution No impact

See Also

“Configure Model for External Code Integration”

Libraries

Specify a list of additional libraries to link with the generated code.

Settings

Default: ''

Enter a space-separated list of static library files to link with the generated code.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

You can specify just the file name if the file is in the current MATLAB folder or in one of
the include folders.

Command-Line Information
Parameter: CustomLibrary
Type: string
Value: library file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



 Code Generation Pane: Custom Code

4-109

See Also

“Configure Model for External Code Integration”



4 Configuration Parameters for Simulink Models

4-110

Code Generation Pane: Debug

The Code Generation > Debug pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT- or ERT-based
target.

In this section...

“Code Generation: Debug Tab Overview” on page 4-110
“Verbose build” on page 4-111
“Retain .rtw file” on page 4-111
“Profile TLC” on page 4-112
“Start TLC debugger when generating code” on page 4-113
“Start TLC coverage when generating code” on page 4-114
“Enable TLC assertion” on page 4-115

Code Generation: Debug Tab Overview

Select build process and Target Language Compiler (TLC) process options.

See Also

• “Debug”
• “Code Generation Pane: Debug” on page 4-110



 Code Generation Pane: Debug

4-111

Verbose build

Display code generation progress.

Settings

Default: on

 On
The MATLAB Command Window displays progress information indicating code
generation stages and compiler output during code generation.

 Off
Does not display progress information.

Command-Line Information
Parameter: RTWVerbose
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

“Debug”

Retain .rtw file

Specify model.rtw file retention.

Settings

Default: off



4 Configuration Parameters for Simulink Models

4-112

 On
Retains the model.rtw file in the current build folder. This parameter is useful if
you are modifying the target files and need to look at the file.

 Off
Deletes the model.rtw from the build folder at the end of the build process.

Command-Line Information
Parameter: RetainRTWFile
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Debug”

Profile TLC

Profile the execution time of TLC files.

Settings

Default: off

 On
The TLC profiler analyzes the performance of TLC code executed during code
generation, and generates an HTML report.



 Code Generation Pane: Debug

4-113

 Off
Does not profile the performance.

Command-Line Information
Parameter: ProfileTLC
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Debug”

Start TLC debugger when generating code

Specify use of the TLC debugger

Settings

Default: Off

 On
The TLC debugger starts during code generation.

 Off
Does not start the TLC debugger.

Tips

• You can also start the TLC debugger by entering the -dc argument into the System
target file field.



4 Configuration Parameters for Simulink Models

4-114

• To invoke the debugger and run a debugger script, enter the -df filename
argument into the System target file field.

Command-Line Information
Parameter: TLCDebug
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Debug”

Start TLC coverage when generating code

Generate the TLC execution report.

Settings

Default: off

 On
Generates .log files containing the number of times each line of TLC code is
executed during code generation.

 Off
Does not generate a report.

Tip

You can also generate the TLC execution report by entering the -dg argument into the
System target file field.



 Code Generation Pane: Debug

4-115

Command-Line Information
Parameter: TLCCoverage
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Debug”

Enable TLC assertion

Produce the TLC stack trace

Settings

Default: off

 On
The build process halts if a user-supplied TLC file contains an %assert directive
that evaluates to FALSE.

 Off
The build process ignores TLC assertion code.

Command-Line Information
Parameter: TLCAssert
Type: string
Value: 'on' | 'off'
Default: 'off'



4 Configuration Parameters for Simulink Models

4-116

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

“Debug”



 Code Generation Pane: Interface

4-117

Code Generation Pane: Interface

The Code Generation > Interface  pane includes the following parameters when the
Simulink Coder product is installed on your system and you select a GRT-based target.

The Code Generation > Interface  pane includes additional parameters when the
Simulink Coder product is installed on your system and you select an ERT-based target.
ERT-based target parameters require an Embedded Coder license when generating code.



4 Configuration Parameters for Simulink Models

4-118

In this section...

“Code Generation: Interface Tab Overview” on page 4-120
“Standard math library” on page 4-120
“Code replacement library” on page 4-121
“Custom” on page 4-124
“Shared code placement” on page 4-124
“Support: floating-point numbers” on page 4-125
“Support: non-finite numbers” on page 4-126
“Support: complex numbers” on page 4-127
“Support: absolute time” on page 4-128



 Code Generation Pane: Interface

4-119

In this section...

“Support: continuous time” on page 4-129
“Support: non-inlined S-functions” on page 4-131
“Support: variable-size signals” on page 4-132
“Multiword type definitions” on page 4-133
“Maximum word length” on page 4-135
“Code interface packaging” on page 4-136
“Multi-instance code error diagnostic” on page 4-139
“Pass root-level I/O as” on page 4-141
“Classic call interface” on page 4-142
“Use dynamic memory allocation for model initialization” on page 4-143
“Use dynamic memory allocation for model block instantiation” on page 4-144
“Single output/update function” on page 4-146
“Terminate function required” on page 4-148
“Generate preprocessor conditionals” on page 4-149
“Suppress error status in real-time model data structure” on page 4-151
“Combine signal/state structures” on page 4-152
“Configure Model Functions” on page 4-154
“Block parameter visibility” on page 4-155
“Internal data visibility” on page 4-156
“Block parameter access” on page 4-157
“Internal data access” on page 4-158
“External I/O access” on page 4-159
“Generate destructor” on page 4-161
“Configure C++ Class Interface” on page 4-162
“MAT-file logging” on page 4-162
“MAT-file variable name modifier” on page 4-165
“Interface” on page 4-166
“Generate C API for: signals” on page 4-167
“Generate C API for: parameters” on page 4-168



4 Configuration Parameters for Simulink Models

4-120

In this section...

“Generate C API for: states” on page 4-169
“Generate C API for: root-level I/O” on page 4-170
“Transport layer” on page 4-171
“MEX-file arguments” on page 4-172
“Static memory allocation” on page 4-173
“Static memory buffer size” on page 4-174

Code Generation: Interface Tab Overview

Select the target software environment, output variable name modifier, and data
exchange interface.

See Also

• “Specify Target Interfaces”
• “Code Generation Pane: Interface” on page 4-117

Standard math library

Specify a standard math library for your model.

Settings

Default: C89/C90 (ANSI)

C89/C90 (ANSI)

Generates calls to the ISO®/IEC 9899:1990 C standard math library for floating-point
functions.

C99 (ISO)

Generates calls to the ISO/IEC 9899:1999 C standard math library.
C++03 (ISO)

Generates calls to the ISO/IEC 14882:2003 C++ standard math library.



 Code Generation Pane: Interface

4-121

Tip

Before setting this parameter, verify that your compiler supports the library you want to
use. If you select a parameter value that your compiler does not support, compiler errors
can occur.

Dependencies

The C++03 (ISO) math library is available for use only if you select C++ for the
Language parameter.

Command-Line Information
Parameter: TargetLangStandard
Type: string
Value: 'C89/C90 (ANSI)' | 'C99 (ISO)' | 'C++03 (ISO)'
Default: 'C89/C90 (ANSI)'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact

See Also

“Specify Target Interfaces”

Code replacement library

Specify an application-specific math library for your model.

Settings

Default: None

None

Does not use a code replacement library.
GNU C99 extensions



4 Configuration Parameters for Simulink Models

4-122

Generates calls to the GNU® gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

Intel IPP for x86-64 (Windows)

Generates calls to the Intel® Performance Primitives (IPP) library for the x86-64
Windows platform.

Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86-64
Windows platform.

Intel IPP for x86/Pentium (Windows)

Generates calls to the Intel Performance Primitives (IPP) library for the x86/Pentium
Windows platform.

Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86/Pentium
Windows platform.

Intel IPP for x86-64 (Linux)

Generates calls to the Intel Performance Primitives (IPP) library for the x86-64
Linux® platform.

Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86-64 Linux
platform.

• Additional values might be listed for licensed target products and for embedded and
desktop targets. If you have created and registered code replacement libraries using
the Embedded Coder product, additional values are listed.

• The software filters the list of Code replacement library values based on
compatibility with the Language, Standard math library, and Device vendor
values you select for your model.

Tips

• If you specify Shared location for the Code Generation > Interface > Shared
code placement parameter or you generate code for models in a model reference
hierarchy,



 Code Generation Pane: Interface

4-123

• Models that are sharing the location or are in the model hierarchy must specify the
same code replacement library (same name, tables, and table entries).

• The code generator reports a checksum warning (see “Shared Utility Checksum”)
if you change the name or contents of the code replacement library and rebuild
the model from the same folder as the previous build. The warning prompts you to
remove the existing folder and stop or stop code generation.

• If both of the following conditions exist for a model that contains Stateflow charts, the
Simulink software regenerates code for the charts and recompiles the generated code.

• You do not specify Shared location for the Code Generation > Interface >
Shared code placement parameter.

• You change the code replacement library name or contents before regenerating
code.

Tip

Before setting this parameter, verify that your compiler supports the library that
you want to use. If you select a parameter value that your compiler does not support,
compiler errors can occur.

Command-Line Information
Parameter: CodeReplacementLibrary
Type: string
Value: 'None' | 'GNU C99 extensions' | 'Intel IPP' | 'Intel IPP/SSE with
GNU99 extensions'

Default: 'None'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact

See Also

“Specify Target Interfaces”



4 Configuration Parameters for Simulink Models

4-124

Custom

Open the Code Replacement Tool. With this tool, you can you create and manage the code
replacement tables that make up a code replacement library (CRL).

Dependencies

• This button appears only for ERT-based targets.
• This button requires an Embedded Coder license when generating code.

See Also

• “What Is Code Replacement Customization?”“Develop a Code Replacement Library”

Shared code placement

Specify the location for generating utility functions, exported data type definitions, and
declarations of exported data with custom storage class.

Settings

Default: Auto

Auto

Operates as follows:

• When the model contains Model blocks, places utility code within the slprj/
target/_sharedutils folder.

• When the model does not contain Model blocks, places utility code in the build
folder (generally, in model.c or model.cpp).

Shared location

Directs code for utilities to be placed within the slprj folder in your working folder.

Command-Line Information
Parameter: UtilityFuncGeneration
Type: string
Value: 'Auto' | 'Shared location'
Default: 'Auto'



 Code Generation Pane: Interface

4-125

Recommended Settings

Application Setting

Debugging Shared location (GRT)
No impact (ERT)

Traceability Shared location (GRT)
No impact (ERT)

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

See Also

• “Specify Target Interfaces”
• “Sharing Utility Code”

Support: floating-point numbers

Specify whether to generate floating-point data and operations.

Settings

Default: On (GUI), 'off' (command-line)

 On
Generates floating-point data and operations.

 Off
Generates pure integer code. If you clear this option, an error occurs if the code
generator encounters floating-point data or expressions. The error message reports
offending blocks and parameters.

Dependencies

• This option only appears for ERT-based targets.
• This option requires an Embedded Coder license when generating code.
• Selecting this option enables Support: non-finite numbers and clearing this option

disables Support: non-finite numbers.
• This option must be the same for top-level and referenced models.



4 Configuration Parameters for Simulink Models

4-126

Command-Line Information
Parameter: PurelyIntegerCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Note: The command-line values are reverse of the settings values. Therefore, 'on' in the
command line corresponds to the description of “Off” in the settings section, and 'off'
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off (GUI), 'on' (command-line) — for integer only
Safety precaution No impact

Support: non-finite numbers

Specify whether to generate nonfinite data and operations on nonfinite data.

Settings

Default: on

 On
Generates nonfinite data (for example, NaN and Inf) and related operations.

 Off
Does not generate nonfinite data and operations. If you clear this option, an error
occurs if the code generator encounters nonfinite data or expressions. The error
message reports offending blocks and parameters.

Note: Code generation is optimized with the assumption that nonfinite data are
absent. However, if your application produces nonfinite numbers through signal data



 Code Generation Pane: Interface

4-127

or MATLAB code, the behavior of the generated code might be inconsistent with
simulation results when processing nonfinite data.

Dependencies

• For ERT-based targets, this parameter is enabled by Support: floating-point
numbers.

• This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: SupportNonFinite
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution Off

Support: complex numbers

Specify whether to generate complex data and operations.

Settings

Default: on

 On
Generates complex numbers and related operations.

 Off
Does not generate complex data and related operations. If you clear this option, an
error occurs if the code generator encounters complex data or expressions. The error
message reports offending blocks and parameters.



4 Configuration Parameters for Simulink Models

4-128

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter must be the same for top-level and referenced models.

Command-Line Information
Parameter: SupportComplex
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off (for real only)
Safety precaution No impact

Support: absolute time

Specify whether to generate and maintain integer counters for absolute and elapsed time
values.

Settings

Default: on

 On
Generates and maintains integer counters for blocks that require absolute or elapsed
time values. Absolute time is the time from the start of program execution to the
present time. An example of elapsed time is time elapsed between two trigger events.

If you select this option and the model does not include blocks that use time values,
the target does not generate the counters.

 Off



 Code Generation Pane: Interface

4-129

Does not generate integer counters to represent absolute or elapsed time values. If
you do not select this option and the model includes blocks that require absolute or
elapsed time values, an error occurs during code generation.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• You must select this parameter if your model includes blocks that require absolute or

elapsed time values.

Command-Line Information
Parameter: SupportAbsoluteTime
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

“Timers”

Support: continuous time

Specify whether to generate code for blocks that use continuous time.

Settings

Default: off

 On
Generates code for blocks that use continuous time.



4 Configuration Parameters for Simulink Models

4-130

 Off
Does not generate code for blocks that use continuous time. If you do not select
this option and the model includes blocks that use continuous time, an error occurs
during code generation.

Dependencies

• This option only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This option must be on if your model includes blocks that require absolute or elapsed

time values.
• If you have customized ert_main.c or .cpp to read model outputs after each base-

rate model step, be aware that selecting the options Support: continuous time
and Single output/update function together may cause output values read from
ert_main for a continuous output port to differ from the corresponding output values
in the logged data for the model. This is because, while logged data is a snapshot of
output at major time steps, output read from ert_main after the base-rate model step
potentially reflects intervening minor time steps. To work around this limitation and
eliminate the discrepancy, do one of the following:

• Separate the generated output and update functions (clear the Single output/
update function option), and insert code in ert_main to read model output
values reflecting only the major time steps. For example, in ert_main, between
the model_output call and the model_update call, read the model External
outputs global data structure (defined in model.h).

• If you want to keep the Single output/update function option selected, insert
code in the generated model.c or .cpp file to return model output values
reflecting only the major time steps. For example, in the model step function,
between the output code and the update code, you could save the value of the
model External outputs global data structure (defined in model.h), and then
restore the value after the update code completes.

• Place a Zero-Order Hold block before the continuous output port.

Command-Line Information
Parameter: SupportContinuousTime
Type: string
Value: 'on' | 'off'
Default: 'off'



 Code Generation Pane: Interface

4-131

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution Off

See Also

“Use Discrete and Continuous Time ”

Support: non-inlined S-functions

Specify whether to generate code for noninlined S-functions.

Settings

Default: Off

 On
Generates code for noninlined S-functions.

 Off
Does not generate code for noninlined S-functions. If this parameter is off and the
model includes a noninlined S-function, an error occurs during the build process.

Tip

• Inlining S-functions is highly advantageous in production code generation, for
example, for implementing device drivers. In such cases, clear this option to enforce
use of inlined S-functions for code generation.

• Noninlined S-functions require additional memory and computation resources, and
can result in significant performance issues. Consider using an inlined S-function
when efficiency is a concern.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.



4 Configuration Parameters for Simulink Models

4-132

• Selecting this parameter also selects Support: floating-point numbers and
Support: non-finite numbers. If you clear Support: floating-point numbers
or Support: non-finite numbers, a warning is displayed during code generation
because these parameters are required by the S-function interface.

Command-Line Information
Parameter: SupportNonInlinedSFcns
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

“Insert S-Function Code”

Support: variable-size signals

Specify whether to generate code for models that use variable-size signals.

Settings

Default: Off

 On
Generates code for models that use variable-size signals.

 Off
Does not generate code for models that use variable-size signals. If this parameter is
off and the model uses variable-size signals, an error occurs during code generation.

Dependencies

• This parameter only appears for ERT-based targets.



 Code Generation Pane: Interface

4-133

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: SupportVariableSizeSignals
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off
Safety precaution Off

Multiword type definitions

Specify whether to use system-defined or user-defined type definitions for multiword
data types in generated code.

Settings

Default: System defined

System defined

Use the default system type definitions for multiword data types in generated code.
During code generation, if multiword usage is detected, multiword type definitions
are generated into the file multiword_types.h.

User defined

Allows you to control how multiword type definitions are handled during the code
generation process. Selecting this value enables the associated parameter Maximum
word length, which allows you to specify a maximum word length, in bits, for
which the code generation process generates multiword type definitions into the file
multiword_types.h. The default maximum word length is 256. If you select 0,
multiword type definitions are not generated into the file multiword_types.h.

The maximum word length for multiword types only determines the type definitions
generated and does not impact the efficiency of the generated code. If the maximum
word length for multiword types is set to 0 or too small, an error occurs when the



4 Configuration Parameters for Simulink Models

4-134

generated code is compiled. This error is caused by the generated code using a type
that does not have the required type definition. To resolve the error, increase the
maximum word length and regenerate the code. If the maximum word length for
multiword types is larger than required, then multiword_types.h might contain
unused type definitions. Unused type definitions do not consume target resources.

Tips

• Adding a model to a model hierarchy or changing an existing model in the hierarchy
can result in updates to the shared multiword_types.h file during code generation.
These updates occur when the new model uses multiword types of length greater
than those of the other models. You must then recompile and, depending on your
development process, reverify previously generated code. To prevent updates to
multiword_types.h, determine a maximum word length sufficiently big to cover the
needs of all models in the hierarchy. Configure every model in the hierarchy to use
that same maximum word length.

• The majority of embedded designs do not need multiword types. By setting maximum
word length for multiword types to 0, you can prevent use of multiword variables
on the target. If you use multiword variables with a maximum word length that is 0
or smaller than required, you are alerted with an error when the generated code is
compiled.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• Selecting the value User defined for this parameter enables the associated

parameter Maximum word length.

Command-Line Information
Parameter: ERTMultiwordTypeDef
Type: string
Value: 'System defined' | 'User defined'
Default: 'System defined'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact



 Code Generation Pane: Interface

4-135

Application Setting

Efficiency No impact
Safety precaution Use default

Maximum word length

Specify a maximum word length, in bits, for which the code generation process generates
system-defined multiword type definitions.

Settings

Default: 256

Specify a maximum word length, in bits, for which the code generation process generates
multiword type definitions into the file multiword_types.h. All multiword type
definitions up to and including this number of bits are generated. If you select 0,
multiword type definitions are not generated into the file multiword_types.h.

The maximum word length for multiword types only determines the type definitions
generated and does not impact the efficiency of the generated code. If the maximum word
length for multiword types is set to 0 or too small, an error occurs when the generated
code is compiled. This error is caused by the generated code using a type that does not
have the required type definition. To resolve the error, increase the maximum word
length and regenerate the code. If the maximum word length for multiword types is
larger than required, then multiword_types.h might contain unused type definitions.
Unused type definitions do not consume target resources.

Tips

• Adding a model to a model hierarchy or changing an existing model in the hierarchy
can result in updates to the shared multiword_types.h file during code generation.
These updates occur when the new model uses multiword types of length greater
than those of the other models. You must then recompile and, depending on your
development process, reverify previously generated code. To prevent updates to
multiword_types.h, determine a maximum word length sufficiently big to cover the
needs of all models in the hierarchy. Configure every model in the hierarchy to use
that same maximum word length.

• The majority of embedded designs do not need multiword types. By setting maximum
word length for multiword types to 0, you can prevent use of multiword variables
on the target. If you use multiword variables with a maximum word length that is 0



4 Configuration Parameters for Simulink Models

4-136

or smaller than required, you are alerted with an error when the generated code is
compiled.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is enabled by selecting the value User defined for the parameter

Multiword type definitions.

Command-Line Information
Parameter: ERTMultiwordLength
Type: integer
Value: valid quantity of bits representing a word size
Default: 256

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Use default

Code interface packaging

Select the packaging for the generated C or C++ code interface.

Settings

Default: Nonreusable function if Language is set to C; C++ class if Language is
set to C++

C++ class

Generate a C++ class interface to model code. The generated interface encapsulates
required model data into C++ class attributes and model entry point functions into C
++ class methods.

Nonreusable function

Generate nonreusable code. Model data structures are statically allocated and
accessed by model entry point functions directly in the model code.



 Code Generation Pane: Interface

4-137

Reusable function

Generate reusable, multi-instance code that is reentrant, as follows:

• For a GRT-based model, the generated model.c source file contains an allocation
function that dynamically allocates model data for each instance of the model.
For an ERT-based model, you can use the Use dynamic memory allocation
for model initialization option to control whether an allocation function is
generated.

• The generated code passes the real-time model data structure in, by reference, as
an argument to model_step and the other model entry point functions.

• The real-time model data structure is exported with the model.h header file.

For an ERT-based model, you can use the Pass root-level I/O as parameter to
control how root-level input and output arguments are passed to the reusable
model entry-point functions. They can be included in the real-time model data
structure that is passed to the functions, passed as individual arguments, or passed
as references to an input structure and an output structure.

Tips

• Entry points are exported with model.h. To call the entry-point functions from hand-
written code, add an #include model.h directive to the code.

• When Reusable function is selected, the code generator generates a pointer to the
real-time model object (model_M).

• In some cases, when Reusable function is selected, the code generator might
generate code that compiles but is not reentrant. For example, if a signal, DWork
structure, or parameter data has a storage class other than Auto, global data
structures are generated.

Dependencies

• The value C++ class is available only if the Language parameter is set to C++ on
the Code Generation pane.

• Selecting Reusable function or C++ class enables Multi-instance code error
diagnostic.

• For an ERT target, selecting Reusable function enables Pass root-level I/O as
and Use dynamic memory allocation for model initialization.

• For an ERT target, selecting C++ class enables the following controls for
customizing the model class interface:



4 Configuration Parameters for Simulink Models

4-138

• Configure C++ Class Interface button
• Data Member Visibility/Access Control subpane
• Model options Generate destructor and Use dynamic memory allocation for

model block instantiation
• For an ERT target, you can use Reusable function with the static ert_main.c

module, provided that you do the following:

• Select the value Part of model data structure for Pass root-level I/O as.
• Select the option Use dynamic memory allocation for model initialization.

• For an ERT target, you cannot use Reusable function if you are using:

• The model_step function prototype control capability
• The subsystem parameter Function with separate data
• A subsystem that

• Has multiple ports that share the same source
• Has a port that is used by multiple instances of the subsystem and has

different sample times, data types, complexity, frame status, or dimensions
across the instances

• Has output marked as a global signal
• For each instance contains identical blocks with different names or parameter

settings
• Using Reusable function does not impact the code generated for function-call

subsystems.

Command-Line Information
Parameter: CodeInterfacePackaging
Type: string
Value: 'C++ class' | 'Nonreusable function' | 'Reusable function'
Default: 'Nonreusable function' if TargetLang is set to 'C'; 'C++ class' if
TargetLang is set to 'C++'

Recommended Settings

Application Setting

Debugging No impact



 Code Generation Pane: Interface

4-139

Application Setting

Traceability No impact
Efficiency Reusable function or C++ class
Safety precaution No impact

See Also

• “Entry-Point Functions and Scheduling”
• “Generate Reentrant Code from Top-Level Models” (GRT)
• “Use GRT with Reusable Function Packaging to Combine Models”
• “Generate Reentrant Code from Top-Level Models” (ERT)
• “Generate C++ Class Interface to Model or Subsystem Code” (GRT)
• “C++ Class Interface Control” (ERT)
• “Code Generation of Subsystems”
• “Code Reuse Limitations for Subsystems”
• “Determine Why Subsystem Code Is Not Reused”
• “S-Functions That Support Code Reuse”
• “Static Main Program Module”
• “Function Prototype Control”
• “Atomic Subsystem Code”
• “Export Function-Call Subsystems”
• model_step

Multi-instance code error diagnostic

Select the severity level for diagnostics displayed when a model violates requirements for
generating multi-instance code.

Settings

Default: Error

None

Proceed with build without displaying a diagnostic message.
Warning



4 Configuration Parameters for Simulink Models

4-140

Proceed with build after displaying a warning message.
Error

Abort build after displaying an error message.

Under certain conditions, the software might

• Generate code that compiles but is not reentrant. For example, if a signal or DWork
structure has a storage class other than Auto, global data structures are generated.

• Be unable to generate valid and compilable code. For example, if the model contains
an S-function that is not code-reuse compliant or a subsystem triggered by a wide
function-call trigger, the coder generates invalid code, displays an error message, and
terminates the build.

Dependencies

This parameter is enabled by setting Code interface packaging to Reusable
function or C++ class.

Command-Line Information
Parameter: MultiInstanceErrorCode
Type: string
Value: 'None' | 'Warning' | 'Error'
Default: 'Error'

Recommended Settings

Application Setting

Debugging Warning or Error
Traceability No impact
Efficiency None

Safety precaution No impact

See Also

• “Entry-Point Functions and Scheduling”
• “Generate Reentrant Code from Top-Level Models”
• “Generate C++ Class Interface to Model or Subsystem Code”
• “Code Generation of Subsystems”
• “Code Reuse Limitations for Subsystems”



 Code Generation Pane: Interface

4-141

• “Determine Why Subsystem Code Is Not Reused”
• “Atomic Subsystem Code”

Pass root-level I/O as

Control how root-level model input and output are passed to the reusable model_step
function.

Settings

Default: Individual arguments

Individual arguments

Passes each root-level model input and output value to model_step as a separate
argument.

Structure reference

Packs root-level model input into a struct and passes struct to model_step as an
argument. Similarly, packs root-level model output into a second struct and passes
it to model_step.

Part of model data structure

Packages root-level model input and output into the real-time model data structure.

Dependencies

• This parameter only appears for ERT-based targets with Code interface packaging
set to Resuable function.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: RootIOFormat
Type: string
Value: 'Individual arguments' | 'Structure reference' | 'Part of model
data structure'

Default: 'Individual arguments'

Recommended Settings

Application Setting

Debugging No impact



4 Configuration Parameters for Simulink Models

4-142

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Entry-Point Functions and Scheduling”
• “Generate Reentrant Code from Top-Level Models”
• “Code Generation of Subsystems”
• “Atomic Subsystem Code”
• model_step

Classic call interface

Specify whether to generate model function calls compatible with the main program
module of the GRT target in models created before R2012a.

Settings

Default: off (except on for GRT models created before R2012a)

 On
Generates model function calls that are compatible with the main program module of
the GRT target (grt_main.c or grt_main.cpp) in models created before R2012a.

This option provides a quick way to use code generated in the current release with
a GRT-based custom target that has a main program module based on pre-R2012a
grt_main.c or grt_main.cpp.

 Off
Disables the classic call interface.

Tips

The following are unsupported:

• Data type replacement
• Nonvirtual subsystem option Function with separate data



 Code Generation Pane: Interface

4-143

Dependencies

• Setting Code interface packaging to C++ class disables this option.
• Selecting this option disables the incompatible option Single output/update

function. Clearing this option enables (but does not select) Single output/update
function.

• For an ERT target, selecting this option also selects the required option Support:
floating-point numbers. If you subsequently clear Support: floating-point
numbers, an error is displayed during code generation.

Command-Line Information
Parameter: GRTInterface
Type: string
Value: 'on' | 'off'
Default: 'off' (except 'on' for GRT models created before R2012a)

Recommended Settings

Application Setting

Debugging No impact
Traceability Off
Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution Off

See Also

“Use Discrete and Continuous Time ”

Use dynamic memory allocation for model initialization

Control how the generated code allocates memory for model data.

Settings

Default: off

 On
Generates a function to dynamically allocate memory (using malloc) for model data
structures.



4 Configuration Parameters for Simulink Models

4-144

 Off
Does not generate a dynamic memory allocation function. The generated code
statically allocates memory for model data structures.

Dependencies

• This parameter only appears for ERT-based targets with Code interface packaging
set to Resuable function.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateAllocFcn
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

• “Entry-Point Functions and Scheduling”
• “Generate Reentrant Code from Top-Level Models”
• “Code Generation of Subsystems”
• “Atomic Subsystem Code”
• model_step

Use dynamic memory allocation for model block instantiation

Specify whether generated code uses the operator new, during model object registration,
to instantiate objects for referenced models configured with a C++ class interface.



 Code Generation Pane: Interface

4-145

Settings

Default: off

 On
Generates code that uses dynamic memory allocation to instantiate objects for
referenced models configured with a C++ class interface. Specifically, during
instantiation of an object for the top model in a model reference hierarchy, the
generated code uses new to instantiate objects for referenced models.

Selecting this option frees a parent model from having to maintain information about
referenced models beyond its direct children.

• If you select this option, be aware that a bad_alloc exception might be thrown,
per the C++ standard, if an out-of-memory error occurs during the use of new. You
must provide code to catch and process the bad_alloc exception in case an out-
of-memory error occurs for a new call during construction of a top model object.

• If Use dynamic memory allocation for model block instantiation is
selected and the base model contains a Model block, the build process might
generate copy constructor and assignment operator functions in the private
section of the model class. The purpose of the functions is to prevent pointer
members within the model class from being copied by other code. For more
information, see “Model Class Copy Constructor and Assignment Operator”.

 Off
Does not generate code that uses new to instantiate referenced model objects.

Clearing this option means that a parent model maintains information about its
referenced models, including its direct and indirect children.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: UseOperatorNewForModelRefRegistration
Type: string
Value: 'on' | 'off'



4 Configuration Parameters for Simulink Models

4-146

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On
Safety precaution Off

See Also

“Configure Code Interface Options”

Single output/update function

Specify whether to generate the model_step function.

Settings

Default: on

 On
Generates the model_step function for a model. This function contains the output
and update function code for the blocks in the model and is called by rt_OneStep to
execute processing for one clock period of the model at interrupt level.

 Off
Does not combine output and update function code into a single function, and instead
generates the code in separate model_output and model_update functions.

Tips

Errors or unexpected behavior can occur if a Model block is part of a cycle, the Model
block is a direct feedthrough block, and an algebraic loop results. See “Model Blocks and
Direct Feed through” for details.

Simulink Coder ignores this parameter for a referenced model if any of the following
conditions apply to that model:



 Code Generation Pane: Interface

4-147

• Is multi-rate
• Has a continuous sample time
• Is logging states (using the States or Final states parameters in the Configuration

Parameters >  Data Import/Export pane

Dependencies

• Setting Code interface packaging to C++ class forces on and disables this option.
• This option and Classic call interface are mutually incompatible and cannot both

be selected through the GUI. Selecting Classic call interface forces off and disables
this option and clearing Classic call interface enables (but does not select) this
option.

• When you use this option, you must clear the option Minimize algebraic loop
occurrences on the Model Referencing pane.

• If you have customized ert_main.c or .cpp to read model outputs after each base-
rate model step, be aware that selecting the options Support: continuous time
and Single output/update function together may cause output values read from
ert_main for a continuous output port to differ from the corresponding output values
in the logged data for the model. This is because, while logged data is a snapshot of
output at major time steps, output read from ert_main after the base-rate model step
potentially reflects intervening minor time steps. To work around this limitation and
eliminate the discrepancy, do one of the following:

• Separate the generated output and update functions (clear the Single output/
update function option), and insert code in ert_main to read model output
values reflecting only the major time steps. For example, in ert_main, between
the model_output call and the model_update call, read the model External
outputs global data structure (defined in model.h).

• If you want to keep the Single output/update function option selected, insert
code in the generated model.c or .cpp file to return model output values
reflecting only the major time steps. For example, in the model step function,
between the output code and the update code, you could save the value of the
model External outputs global data structure (defined in model.h), and then
restore the value after the update code completes.

• Place a Zero-Order Hold block before the continuous output port.

Command-Line Information
Parameter: CombineOutputUpdateFcns
Type: string



4 Configuration Parameters for Simulink Models

4-148

Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency On
Safety precaution On

See Also

“rt_OneStep and Scheduling Considerations”

Terminate function required

Specify whether to generate the model_terminate function.

Settings

Default: on

 On
Generates a model_terminate function. This function contains model termination
code and should be called as part of system shutdown.

 Off
Does not generate a model_terminate function. Suppresses the generation of this
function if you designed your application to run indefinitely and does not require a
terminate function.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: IncludeMdlTerminateFcn



 Code Generation Pane: Interface

4-149

Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Off (execution, ROM), No impact (RAM)
Safety precaution Off

See Also

model_terminate

Generate preprocessor conditionals

Generate preprocessor conditional directives globally for a model or locally for each
Model block with variant models.

Settings

Default: Use local settings

Use local settings

Generates preprocessor conditional directives based on the value of the Generate
preprocessor conditionals parameter on the Model block parameters dialog. If
you select the Generate preprocessor conditionals parameter in the Model block
parameters dialog, the generated code contains preprocessor conditional directives
for all variant models of that Model block. If you do not select this parameter for a
Model block, code is generated for the active variant model.

Enable all

Generates preprocessor conditional directives for all variant models of the Model
blocks. Disables the Generate preprocessor conditionals option in the Model
block parameters dialog.

Disable all



4 Configuration Parameters for Simulink Models

4-150

Only generates code for the active variant model of the Model block. Disables the
Generate preprocessor conditionals option in the Model block parameters dialog
for Model blocks.

Tips

For generating preprocessor directives we recommend the following settings:

• Select the “Inline parameters” parameter on the Optimization > Signals and
Parameters pane of the Configuration Parameters dialog box.

• Deselect the “Ignore custom storage classes” parameter on the Code Generation
pane of the Configuration Parameters dialog box.

Dependencies

• This parameter only appears for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• Setting this parameter to Use local settings enables Generate preprocessor

conditionals parameter on the Model block parameters dialog.
• Setting this parameter to Enable all or Disable all disables the Generate

preprocessor conditionals check box on the Model block parameters dialog.
• Setting this parameter to Enable all sets the Selected variant control on the

Model block parameter dialog to (derive from conditions).

Command-Line Information
Parameter: GeneratePreprocessorConditionals
Type: string
Value: 'Use local settings' | 'Enable all' | 'Disable all'
Default: 'Use local settings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



 Code Generation Pane: Interface

4-151

See Also

• “Workflow for Implementing Variants”
• “Variant Systems”

Suppress error status in real-time model data structure

Specify whether to log or monitor error status.

Settings

Default: off

 On
Omits the error status field from the generated real-time model data structure
rtModel. This option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit the rtModel
data structure from generated code.

 Off
Includes an error status field in the generated real-time model data structure
rtModel. You can use available macros to monitor the field for error message data or
set it with error message data.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires an Embedded Coder license when generating code.
• This parameter is cleared if you select the incompatible option MAT-file logging. If

you subsequently select this parameter, code generation displays an error.
• Selecting this parameter clears Support: continuous time.
• If your application contains multiple integrated models, the setting of this option

must be the same for all of the models to avoid unexpected application behavior. For
example, if you select the option for one model but not another, an error status might
not get registered by the integrated application.

Command-Line Information
Parameter: SuppressErrorStatus



4 Configuration Parameters for Simulink Models

4-152

Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability No impact
Efficiency On
Safety precaution On

See Also

“Use the Real-Time Model Data Structure”

Combine signal/state structures

Specify whether to combine global block signals and global state data into one data
structure in the generated code

Settings

Default: Off

 On
Combine global block signal data (block I/O) and global state data (DWork vectors)
into one data structure in the generated code.

 Off
Store global block signals and global states in separate data structures, block I/O and
DWork vectors, in the generated code.

Tips

The benefits to setting this parameter to On are:

• Enables tighter memory representation through fewer bitfields, which reduces RAM
usage

• Enables better alignment of data structure elements, which reduces RAM usage



 Code Generation Pane: Interface

4-153

• Reduces the number of arguments to reusable subsystem and model reference block
functions, which reduces stack usage

• Better readable data structures with more consistent element sorting

Example

For a model that generates the following code:

/* Block signals (auto storage) */

typedef struct {

  struct {

    uint_T LogicalOperator:1;

    uint_T UnitDelay1:1;

  } bitsForTID0;

} BlockIO;

/* Block states (auto storage) */

typedef struct {

  struct {

    uint_T UnitDelay_DSTATE:1

    uint_T UnitDelay1_DSTATE:1

  } bitsForTID0;

} D_Work;

If you select Combine signal/state structures, the generated code now looks like this:

/* Block signals and states (auto storage)

   for system */

typedef struct {

  struct {

    uint_T LogicalOperator:1;

    uint_T UnitDelay1:1;

    uint_T UnitDelay_DSTATE:1;

    uint_T UnitDelay1_DSTATE:1;

  } bitsForTID0;

} D_Work;

Dependencies

This parameter:

• Appears only for ERT-based targets.
• Requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: CombineSignalStateStructs



4 Configuration Parameters for Simulink Models

4-154

Type: string
Value: 'on' | 'off'
Default: off

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On
Safety precaution No impact

See Also

• “Global Block I/O Structure”
• “State Storage”

Configure Model Functions

Open the Model Interface dialog box. In this dialog box, you can specify whether the code
generator uses default model_initialize and model_step function prototypes or
model-specific C prototypes. Based on your selection, you can preview and modify the
function prototypes.

Dependencies

• This button appears only for ERT-based targets with Code interface packaging set
to a value other than C++ class.

• This button requires an Embedded Coder license when generating code.
• This button is active only if your model uses an attached configuration set. If your

model uses a referenced configuration set, the button is greyed out. If you want to
configure a model-specific step function prototype for a referenced configuration
set, use the MATLAB function prototype control functions described in “Configure
Function Prototypes Programmatically”.

See Also

• “Function Prototype Control”
• model_initialize



 Code Generation Pane: Interface

4-155

• model_step

• “Launch the Model Interface Dialog Boxes”

Block parameter visibility

Specify whether to generate the block parameter structure as a public, private, or
protected data member of the C++ model class.

Settings

Default: private

public

Generates the block parameter structure as a public data member of the C++ model
class.

private

Generates the block parameter structure as a private data member of the C++
model class.

protected

Generates the block parameter structure as a protected data member of the C++
model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: ParameterMemberVisibility
Type: string
Value: 'public' | 'private' | 'protected'
Default: 'private'

Recommended Settings

Application Setting

Debugging No impact



4 Configuration Parameters for Simulink Models

4-156

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution protected

See Also

“Configure Code Interface Options”

Internal data visibility

Specify whether to generate internal data structures such as Block I/O, DWork vectors,
Run-time model, Zero-crossings, and continuous states as public, private, or
protected data members of the C++ model class.

Settings

Default: private

public

Generates internal data structures as public data members of the C++ model class.
private

Generates internal data structures as private data members of the C++ model
class.

protected

Generates internal data structures as protected data members of the C++ model
class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: InternalMemberVisibility
Type: string



 Code Generation Pane: Interface

4-157

Value: 'public' | 'private' | 'protected'
Default: 'private'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution protected

See Also

“Configure Code Interface Options”

Block parameter access

Specify whether to generate access methods for block parameters for the C++ model
class.

Settings

Default: None

None

Does not generate access methods for block parameters for the C++ model class.
Method

Generates noninlined access methods for block parameters for the C++ model class.
Inlined method

Generates inlined access methods for block parameters for the C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.



4 Configuration Parameters for Simulink Models

4-158

Command-Line Information
Parameter: GenerateParameterAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method'
Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method

Efficiency Inlined method

Safety precaution None

See Also

“Configure Code Interface Options”

Internal data access

Specify whether to generate access methods for internal data structures, such as Block
I/O, DWork vectors, Run-time model, Zero-crossings, and continuous states, for the C++
model class.

Settings

Default: None

None

Does not generate access methods for internal data structures for the C++ model
class.

Method

Generates noninlined access methods for internal data structures for the C++ model
class.

Inlined method

Generates inlined access methods for internal data structures for the C++ model
class.



 Code Generation Pane: Interface

4-159

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateInternalMemberAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method'
Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method

Efficiency Inlined method

Safety precaution None

See Also

“Configure Code Interface Options”

External I/O access

Specify whether to generate access methods for root-level I/O signals for the C++ model
class.

Note: This parameter affects generated code only if you are using the default (void-void
style) step method for your model class; not if you are explicitly passing arguments for
root-level I/O signals using an I/O arguments style step method. For more information,
see “Passing No Arguments (void-void)” and “Passing I/O Arguments”.

Settings

Default: None



4 Configuration Parameters for Simulink Models

4-160

None

Does not generate access methods for root-level I/O signals for the C++ model class.
Method

Generates noninlined access methods for root-level I/O signals for the C++ model
class. The software generates set and get methods for each signal.

Inlined method

Generates inlined access methods for root-level I/O signals for the C++ model class.
The software generates set and get methods for each signal.

Structure-based method

Generates noninlined, structure-based access methods for root-level I/O signals for
the C++ model class. The software generates one set method, taking the address of
the external input structure as an argument, and for external outputs (if applicable),
one get method, returning the reference to the external output structure.

Inlined structure-based method

Generates inlined, structure-based access methods for root-level I/O signals for the
C++ model class. The software generates one set method, taking the address of the
external input structure as an argument, and for external outputs (if applicable), one
get method, returning the reference to the external output structure.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateExternalIOAccessMethods
Type: string
Value: 'None' | 'Method' | 'Inlined method' | 'Structure-based method' |
'Inlined structure-based method'

Default: 'None'

Recommended Settings

Application Setting

Debugging Inlined method

Traceability Inlined method



 Code Generation Pane: Interface

4-161

Application Setting

Efficiency Inlined method

Safety precaution None

See Also

“Configure Code Interface Options”

Generate destructor

Specify whether to generate a destructor for the C++ model class.

Settings

Default: on

 On
Generates a destructor for the C++ model class.

 Off
Does not generate a destructor for the C++ model class.

Dependencies

• This parameter appears only for ERT-based targets with Language set to C++ and
Code interface packaging set to C++ class.

• This parameter requires an Embedded Coder license when generating code.

Command-Line Information
Parameter: GenerateDestructor
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact



4 Configuration Parameters for Simulink Models

4-162

Application Setting

Efficiency No impact
Safety precaution Off

See Also

“Configure Code Interface Options”

Configure C++ Class Interface

Open the Configure C++ class interface dialog box. In this dialog box, you can customize
the C++ class interface for your model code. Based on your selections, you can preview
and modify the model-specific C++ class interface.

Dependencies

• This button appears only for ERT-based targets with Language set to C++ and Code
interface packaging set to C++ class.

• This button requires an Embedded Coder license when generating code.
• This button is active only if your model uses an attached configuration set. If your

model uses a referenced configuration set, the button is greyed out. If you want to
configure a model-specific C++ class interface for a referenced configuration set, use
the MATLAB C++ class interface control functions described in “Customize C++ Class
Interfaces Programmatically”.

See Also

• “C++ Class Interface Control”
• model_step

• “Configure Step Method for Your Model Class”

MAT-file logging

Specify MAT-file logging

Settings

Default: on for the GRT target, off for ERT-based targets



 Code Generation Pane: Interface

4-163

 On
Enable MAT-file logging. When you select this option, the generated code saves to
MAT-files simulation data specified in one of the following ways:

• Configuration Parameters > Data Import/Export, Save to workspace
subpane (see “Data Import/Export Pane”)

• To Workspace blocks
• To File blocks
• Scope blocks with the Save data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace, as described in
“Export Simulation Data” and “Configure Signal Data for Logging”. Setting MAT-file
logging redirects the data to a MAT-file instead. The file is named model.mat, where
model is the name of your model.

 Off
Disable MAT-file logging. Clearing this option has the following benefits:

• Eliminates overhead associated with supporting a file system, which typically is
not a requirement for embedded applications

• Eliminates extra code and memory usage required to initialize, update, and clean
up logging variables

• Under certain conditions, eliminates code and storage associated with root output
ports

• Omits the comparison between the current time and stop time in the
model_step, allowing the generated program to run indefinitely, regardless of
the stop time setting

Dependencies

• For the GRT target, selecting this option also selects the required option Support
non-finite numbers. If you subsequently clear Support non-finite numbers, an
error is displayed during code generation.

• For ERT-based targets, selecting this option also selects the required options
Support: floating-point numbers, Support: non-finite numbers, and
Terminate function required. If you subsequently clear Support: floating-point
numbers, Support: non-finite numbers, or Terminate function required, an
error is displayed during code generation.



4 Configuration Parameters for Simulink Models

4-164

• For ERT-based targets, selecting this option clears the incompatible option Suppress
error status in real-time model data structure. If you subsequently select
Suppress error status in real-time model data structure, an error is displayed
during code generation.

• Selecting this option enables MAT-file variable name modifier.
• For ERT-based targets, clear this option if you are using exported function calls.

Limitations

In a referenced model, only the following data logging features are supported:

• To File blocks

• State logging — the software stores the data in the MAT-file for the top model.

In the context of the Embedded Coder product, MAT-file logging does not support the
following IDEs: Analog Devices™ VisualDSP++®, Texas Instruments™ Code Composer
Studio™, Wind River® DIAB/GCC.

Command-Line Information
Parameter: MatFileLogging
Type: string
Value: 'on' | 'off'
Default: 'on' for the GRT target, 'off' for ERT-based targets

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency Off
Safety precaution Off

See Also

• “Logging”
• “Log Data for Analysis”
• “Virtualized Output Ports Optimization”“Virtualized Output Ports Optimization”



 Code Generation Pane: Interface

4-165

MAT-file variable name modifier

Select the string to add to MAT-file variable names.

Settings

Default: rt_

rt_

Adds a prefix string.
_rt

Adds a suffix string.
none

Does not add a string.

Dependency

If you have an Embedded Coder license, for the GRT target or ERT-based targets, this
parameter is enabled by MAT-file logging.

Command-Line Information
Parameter: LogVarNameModifier
Type: string
Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Logging”
• “Log Data for Analysis”



4 Configuration Parameters for Simulink Models

4-166

Interface

Specify a data exchange interface to include in the generated code.

Settings

Default: None

None

Does not generate extra code to support a data exchange interface.
C API

Generates code for the C API data interface.
External mode

Generates code for the External mode data interface.
ASAP2

Generates code for the ASAP2 data interface.

Dependencies

Selecting C API enables the following parameters:

• Generate C API for: signals
• Generate C API for: parameters
• Generate C API for: states
• Generate C API for: root-level I/O

Selecting External mode enables the following parameters:

• Transport layer
• MEX-file arguments
• Static memory allocation

Command-Line Information
Parameter: see table
Type: string
Value: 'on' | 'off'
Default: 'off'



 Code Generation Pane: Interface

4-167

To enable... Set this parameter... To this value...

None RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO,
ExtMode,
GenerateASAP2

'off'

C API RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO

'on'

External mode ExtMode 'on'

ASAP2 GenerateASAP2 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact during development

None for production code generation

See Also

• “Data Interchange Using the C API”
• “Host/Target Communication”
• “ASAP2 Data Measurement and Calibration”

Generate C API for: signals

Generate a C API signals structure.

Settings

Default: on



4 Configuration Parameters for Simulink Models

4-168

 On
Generates C API interface to global block outputs.

 Off
Does not generate C API signals.

Dependency

This parameter is enabled by selecting Interface > C API.

Command-Line Information
Parameter: RTWCAPISignals
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Data Interchange Using the C API”

Generate C API for: parameters

Generate C API parameter tuning structures.

Settings

Default: on

 On
Generates C API interface to global block parameters.



 Code Generation Pane: Interface

4-169

 Off
Does not generate C API parameters.

Dependency

This parameter is enabled by selecting Interface > C API.

Command-Line Information
Parameter: RTWCAPIParams
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Data Interchange Using the C API”

Generate C API for: states

Generate a C API states structure.

Settings

Default: off

 On
Generates C API interface to discrete and continuous states.

 Off
Does not generate C API states.



4 Configuration Parameters for Simulink Models

4-170

Dependency

This parameter is enabled by selecting Interface > C API.

Command-Line Information
Parameter: RTWCAPIStates
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Data Interchange Using the C API”

Generate C API for: root-level I/O

Generate a C API root-level I/O structure.

Settings

Default: off

 On
Generates a C API interface to root-level inputs and outputs.

 Off
Does not generate a C API interface to root-level inputs and outputs.

Dependency

This parameter is enabled by selecting Interface > C API.



 Code Generation Pane: Interface

4-171

Command-Line Information
Parameter: RTWCAPIRootIO
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Data Interchange Using the C API”

Transport layer

Specify the transport protocol for communications.

Settings

Default: tcpip

tcpip

Applies a TCP/IP transport mechanism. The MEX-file name is ext_comm.
serial

Applies a serial transport mechanism. The MEX-file name is
ext_serial_win32_comm.

Tip

The MEX-file name displayed next to Transport layer cannot be edited in the
Configuration Parameters dialog box. The value is specified either in matlabroot/
toolbox/simulink/simulink/extmode_transports.m, for targets provided by
MathWorks®, or in an sl_customization.m file, for custom targets and/or custom
transports.



4 Configuration Parameters for Simulink Models

4-172

Dependency

This parameter is enabled by selecting External mode in the Interface parameter.

Command-Line Information
Parameter: ExtModeTransport
Type: integer
Value: 0 for TCP/IP | 1 for serial
Default: 0

Recommended Settings

Application No impact

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Target Interfacing”
• “Create a Transport Layer for External Communication”

MEX-file arguments

Specify arguments to pass to an External mode interface MEX-file for communicating
with executing targets.

Settings

Default: ''

For TCP/IP interfaces, ext_comm allows three optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')
• Verbosity level (0 for no information or 1 for detailed information)
• TCP/IP server port number (an integer value between 256 and 65535, with a default

of 17725)



 Code Generation Pane: Interface

4-173

For a serial transport, ext_serial_win32_comm allows three optional arguments:

• Verbosity level (0 for no information or 1 for detailed information)
• Serial port ID (for example, 1 for COM1, and so on)
• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200, 38400,

57600, 115200, with a default baud rate of 57600)

Dependency

Depending on the specified “System target file”, this parameter is enabled by the value
selection Data exchange > Interface > External mode or by an External mode
check box.

Command-Line Information
Parameter: ExtModeMexArgs
Type: string
Value: valid arguments
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Target Interfacing”
• “Choose Communication Protocol for Client and Server”

Static memory allocation

Control memory buffer for External mode communication.

Settings

Default: off



4 Configuration Parameters for Simulink Models

4-174

 On
Enables the Static memory buffer size parameter for allocating dynamic memory.

 Off
Uses a static memory buffer for External mode instead of allocating dynamic memory
(calls to malloc).

Tip

To determine how much memory you need to allocate, select verbose mode on the target
to display the amount of memory it tries to allocate and the amount of memory available.

Dependencies

• Depending on the specified “System target file”, this parameter is enabled by the
value selection Data exchange > Interface > External mode or by an External
mode check box.

• This parameter enables Static memory buffer size.

Command-Line Information
Parameter: ExtModeStaticAlloc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure External Mode Options for Code Generation”

Static memory buffer size



 Code Generation Pane: Interface

4-175

Specify the memory buffer size for External mode communication.

Settings

Default: 1000000

Enter the number of bytes to preallocate for External mode communications buffers in
the target.

Tips

• If you enter too small a value for your application, External mode issues an out-of-
memory error.

• To determine how much memory you need to allocate, select verbose mode on the
target to display the amount of memory it tries to allocate and the amount of memory
available.

Dependency

This parameter is enabled by Static memory allocation.

Command-Line Information
Parameter: ExtModeStaticAllocSize
Type: integer
Value: valid value
Default: 1000000

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure External Mode Options for Code Generation”



4 Configuration Parameters for Simulink Models

4-176

Code Generation Pane: RSim Target

The Code Generation > RSim Target pane includes the following parameters when
the Simulink Coder product is installed on your system and you specify the rsim.tlc
system target file.

In this section...

“Code Generation: RSim Target Tab Overview” on page 4-176
“Enable RSim executable to load parameters from a MAT-file” on page 4-177
“Solver selection” on page 4-177
“Force storage classes to AUTO” on page 4-178

Code Generation: RSim Target Tab Overview

Set configuration parameters for rapid simulation.

Configuration

This tab appears only if you specify rsim.tlc as the “System target file” on page 4-4.

See Also

• “Configure and Build Model for Rapid Simulation”
• “Run Rapid Simulations”
• “Code Generation Pane: RSim Target” on page 4-176



 Code Generation Pane: RSim Target

4-177

Enable RSim executable to load parameters from a MAT-file

Specify whether to load RSim parameters from a MAT-file.

Settings

Default: on

 On
Enables RSim to load parameters from a MAT-file.

 Off
Disables RSim from loading parameters from a MAT-file.

Command-Line Information
Parameter: RSIM_PARAMETER_LOADING
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Create a MAT-File That Includes a Model Parameter Structure”

Solver selection

Instruct the target how to select the solver.

Settings

Default: auto



4 Configuration Parameters for Simulink Models

4-178

auto

Lets the target choose the solver. The target uses the Simulink solver module if
you specify a variable-step solver on the Solver pane. Otherwise, the target uses a
Simulink Coder built-in solver.

Use Simulink solver module

Instructs the target to use the variable-step solver that you specify on the Solver
pane.

Use fixed-step solvers

Instructs the target to use the fixed-step solver that you specify on the Solver pane.

Command-Line Information
Parameter: RSIM_SOLVER_SELECTION
Type: string
Value: 'auto' | 'usesolvermodule' | 'usefixstep'
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Force storage classes to AUTO

Specify whether to retain your storage class settings in a model or to use the automatic
settings.

Settings

Default: on

 On
Forces the Simulink software to determine storage classes.

 Off



 Code Generation Pane: RSim Target

4-179

Causes the model to retain storage class settings.

Tips

• Turn this parameter on for flexible custom code interfacing.
• Turn this parameter off to retain storage class settings such as ExportedGlobal or

ImportExtern.

Command-Line Information
Parameter: RSIM_STORAGE_CLASS_AUTO
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-180

Code Generation Pane: S-Function Target

The Code Generation > S-Function Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify the
rtwsfcn.tlc system target file.

In this section...

“Code Generation S-Function Target Tab Overview” on page 4-180
“Create new model” on page 4-180
“Use value for tunable parameters” on page 4-181
“Include custom source code” on page 4-182

Code Generation S-Function Target Tab Overview

Control code generated for the S-function target (rtwsfcn.tlc).

Configuration

This tab appears only if you specify the S-function target (rtwsfcn.tlc) as the “System
target file” on page 4-4.

See Also

• “Generated S-Function Block”
• “Code Generation Pane: S-Function Target” on page 4-180

Create new model

Create a new model containing the generated S-function block.

Settings

Default: on



 Code Generation Pane: S-Function Target

4-181

 On
Creates a new model, separate from the current model, containing the generated S-
function block.

 Off
Generates code but a new model is not created.

Command-Line Information
Parameter: CreateModel
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generated S-Function Block”

Use value for tunable parameters

Use the variable value instead of the variable name in generated block mask edit fields
for tunable parameters.

Settings

Default: off

 On
Uses variable values for tunable parameters instead of the variable name in the
generated block mask edit fields.

 Off
Uses variable names for tunable parameters in the generated block mask edit fields.

Command-Line Information
Parameter: UseParamValues
Type: string
Value: 'on' | 'off'
Default: 'off'



4 Configuration Parameters for Simulink Models

4-182

See Also

“Generated S-Function Block”

Include custom source code

Include custom source code in the code generated for the S-function.

Settings

Default: off

 On
Include provided custom source code in the code generated for the S-function.

 Off
Do not include custom source code in the code generated for the S-function.

Command-Line Information
Parameter: AlwaysIncludeCustomSrc
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generated S-Function Block”



 Code Generation Pane: Tornado Target

4-183

Code Generation Pane: Tornado Target

The Code Generation > Tornado Target pane includes the following parameters
when the Simulink Coder product is installed on your system and you specify the
tornado.tlc system target file.

In this section...

“Code Generation: Tornado Target Tab Overview” on page 4-184
“Standard math library” on page 4-184
“Code replacement library” on page 4-185
“Shared code placement” on page 4-187
“MAT-file logging” on page 4-188
“MAT-file variable name modifier” on page 4-190
“Code Format” on page 4-191
“StethoScope” on page 4-192
“Download to VxWorks target” on page 4-193
“Base task priority” on page 4-194



4 Configuration Parameters for Simulink Models

4-184

In this section...

“Task stack size” on page 4-195
“External mode” on page 4-195
“Transport layer” on page 4-197
“MEX-file arguments” on page 4-197
“Static memory allocation” on page 4-198
“Static memory buffer size” on page 4-200

Code Generation: Tornado Target Tab Overview

Control Simulink Coder generated code for the Tornado target.

Configuration

This tab appears only if you specify tornado.tlc as the “System target file” on page 4-4.

See Also

• Tornado User's Guide from Wind River Systems
• StethoScope User's Guide from Wind River Systems
• “Asynchronous Support”
• “Code Generation Pane: Tornado Target” on page 4-183

Standard math library

Specify a standard math library for your model.

Settings

Default: C89/C90 (ANSI)

C89/C90 (ANSI)

Generates calls to the ISO/IEC 9899:1990 C standard math library for floating-point
functions.

C99 (ISO)

Generates calls to the ISO/IEC 9899:1999 C standard math library.

http://www.windriver.com/
http://www.windriver.com/


 Code Generation Pane: Tornado Target

4-185

C++03 (ISO)

Generates calls to the ISO/IEC 14882:2003 C++ standard math library.

Tip

Before setting this parameter, verify that your compiler supports the library you want to
use. If you select a parameter value that your compiler does not support, compiler errors
can occur.

Dependencies

The C++03 (ISO) math library is available for use only if you select C++ for the
Language parameter.

Command-Line Information
Parameter: TargetLangStandard
Type: string
Value: 'C89/C90 (ANSI)' | 'C99 (ISO)' | 'C++03 (ISO)'
Default: 'C89/C90 (ANSI)'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact

See Also

“Specify Target Interfaces”

Code replacement library

Specify an application-specific math library for your model.

Settings

Default: None

None



4 Configuration Parameters for Simulink Models

4-186

Does not use a code replacement library.
GNU C99 extensions

Generates calls to the GNU gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

Intel IPP for x86-64 (Windows)

Generates calls to the Intel Performance Primitives (IPP) library for the x86-64
Windows platform.

Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86-64
Windows platform.

Intel IPP for x86/Pentium (Windows)

Generates calls to the Intel Performance Primitives (IPP) library for the x86/Pentium
Windows platform.

Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86/Pentium
Windows platform.

Intel IPP for x86-64 (Linux)

Generates calls to the Intel Performance Primitives (IPP) library for the x86-64
Linux platform.

Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

Generates calls to the GNU libraries for Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE), with GNU C99 extensions, for the x86-64 Linux
platform.

Note:

• Additional values might be listed for licensed target products, for embedded and
desktop targets, or if you have created and registered code replacement libraries using
the Embedded Coder product.

• The list of Code replacement library values is filtered based on compatibility with
the Language, Standard math library, and Device vendor values selected for
your model.



 Code Generation Pane: Tornado Target

4-187

Tip

Before setting this parameter, verify that your compiler supports the library you want to
use. If you select a parameter value that your compiler does not support, compiler errors
can occur.

Command-Line Information
Parameter: CodeReplacementLibrary
Type: string
Value: 'None' | 'GNU C99 extensions' | 'Intel IPP' | 'Intel IPP/SSE with
GNU99 extensions'

Default: 'None'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Valid library
Safety precaution No impact

See Also

“Specify Target Interfaces”

Shared code placement

Specify the location for generating utility functions, exported data type definitions, and
declarations of exported data with custom storage class.

Settings

Default: Auto

Auto

Operates as follows:

• When the model contains Model blocks, places utility code within the slprj/
target/_sharedutils folder.

• When the model does not contain Model blocks, places utility code in the build
folder (generally, in model.c or model.cpp).



4 Configuration Parameters for Simulink Models

4-188

Shared location

Directs code for utilities to be placed within the slprj folder in your working folder.

Command-Line Information
Parameter: UtilityFuncGeneration
Type: string
Value: 'Auto' | 'Shared location'
Default: 'Auto'

Recommended Settings

Application Setting

Debugging Shared location

Traceability Shared location

Efficiency No impact (execution, RAM)
Shared location (ROM)

Safety precaution No impact

See Also

• “Specify Target Interfaces”
• “Sharing Utility Code”

MAT-file logging

Specify whether to enable MAT-file logging.

Settings

Default: off

 On
Enables MAT-file logging. When you select this option, the generated code saves to
MAT-files simulation data specified in one of the following ways:

• Configuration Parameters dialog box, Data Import/Export pane, Save to
workspace subpane (see “Data Import/Export Pane”)

• To Workspace blocks



 Code Generation Pane: Tornado Target

4-189

• Scope blocks with the Save data to workspace parameter enabled

In simulation, this data would be written to the MATLAB workspace, as described in
“Export Simulation Data” and “Configure Signal Data for Logging”. Setting MAT-file
logging redirects the data to a MAT-file instead. The file is named model.mat, where
model is the name of your model.

 Off
Disables MAT-file logging. Clearing this option has the following benefits:

• Eliminates overhead associated with supporting a file system, which typically is
not required for embedded applications

• Eliminates extra code and memory usage required to initialize, update, and clean
up logging variables

• Under certain conditions, eliminates code and storage associated with root output
ports

• Omits the comparison between the current time and stop time in the
model_step, allowing the generated program to run indefinitely, regardless of
the stop time setting

Dependencies

Selecting this parameter enables MAT-file variable name modifier.

Limitation

MAT-file logging does not work in a referenced model, and code is not generated to
implement it.

Command-Line Information
Parameter: MatFileLogging
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability No impact



4 Configuration Parameters for Simulink Models

4-190

Application Setting

Efficiency Off
Safety precaution Off

See Also

• “Logging”
• “Log Data for Analysis”
• “Virtualized Output Ports Optimization”

MAT-file variable name modifier

Select the string to add to the MAT-file variable names.

Settings

Default: rt_

rt_

Adds a prefix string.
_rt

Adds a suffix string.
none

Does not add a string.

Dependency

If you have an Embedded Coder license, this parameter is enabled by MAT-file logging.

Command-Line Information
Parameter: LogVarNameModifier
Type: string
Value: 'none' | 'rt_' | '_rt'
Default: 'rt_'

Recommended Settings

Application Setting

Debugging No impact



 Code Generation Pane: Tornado Target

4-191

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Logging”
• “Log Data for Analysis”

Code Format

Specify the code generation format.

Settings

Default: RealTime

RealTime

Specifies the Real-Time code generation format.
RealTimeMalloc

Specifies the Real-Time Malloc code generation format.

Command-Line Information
Parameter: CodeFormat
Type: string
Value: 'RealTime' | 'RealTimeMalloc'
Default: 'RealTime'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-192

See Also

“Targets and Code Formats”

StethoScope

Specify whether to enable StethoScope, an optional data acquisition and data monitoring
tool.

Settings

Default: off

 On
Enables StethoScope.

 Off
Disables StethoScope.

Tips

You can optionally monitor and change the parameters of the executing real-time
program using either StethoScope or Simulink External mode, but not both with the
same compiled image.

Dependencies

Enabling StethoScope automatically disables External mode, and vice versa.

Command-Line Information
Parameter: StethoScope
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On



 Code Generation Pane: Tornado Target

4-193

Application Setting

Traceability No impact
Efficiency Off
Safety precaution Off

See Also

• Tornado User's Guide from Wind River Systems
• StethoScope User's Guide from Wind River Systems

Download to VxWorks target

Specify whether to automatically download the generated program to the VxWorks
target.

Settings

Default: off

 On
Automatically downloads the generated program to VxWorks after each build.

 Off
Does not automatically download to VxWorks, you must downloaded generated
programs manually.

Tips

• Automatic download requires specifying the target name and host name in the
makefile.

• Before every build, reset VxWorks by pressing Ctrl+X on the host console or power-
cycling the VxWorks chassis. This clears dangling processes or stale data that exists
in VxWorks when the automatic download occurs.

Command-Line Information
Parameter: DownloadToVxWorks
Type: string
Value: 'on' | 'off'
Default: 'off'

http://www.windriver.com/
http://www.windriver.com/


4 Configuration Parameters for Simulink Models

4-194

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

• Tornado User's Guide from Wind River Systems
• “Asynchronous Support”

Base task priority

Specify the priority with which the base rate task for the model is to be spawned.

Settings

Default: 30

Tips

• For a multirate, multitasking model, the Simulink Coder software increments the
priority of each subrate task by one.

• The value you specify for this option will be overridden by a base priority specified in
a call to the rt_main() function spawned as a task.

Command-Line Information
Parameter: BasePriority
Type: integer
Value: valid value
Default: 30

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

http://www.windriver.com/


 Code Generation Pane: Tornado Target

4-195

Application Setting

Efficiency Might impact efficiency, depending on other task's
priorities

Safety precaution No impact

See Also

• Tornado User's Guide from Wind River Systems
• “Asynchronous Support”

Task stack size

Stack size in bytes for each task that executes the model.

Settings

Default: 16384

Command-Line Information
Parameter: TaskStackSize
Type: integer
Value: valid value
Default: 16384

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Larger stack may waste space
Safety precaution Larger stack reduces the possibility of overflow

See Also

• Tornado User's Guide from Wind River Systems
• “Asynchronous Support”

External mode

http://www.windriver.com/
http://www.windriver.com/


4 Configuration Parameters for Simulink Models

4-196

Specify whether to enable communication between the Simulink model and an
application based on a client/server architecture.

Settings

Default: on

 On
Enables External mode. The client (Simulink model) transmits messages requesting
the server (application) to accept parameter changes or to upload signal data. The
server responds by executing the request.

 Off
Disables External mode.

Dependencies

Selecting this parameter enables:

• Transport layer
• MEX-file arguments
• Static memory allocation

Command-Line Information
Parameter: ExtMode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Host/Target Communication”



 Code Generation Pane: Tornado Target

4-197

Transport layer

Specify the transport protocol for External mode communications.

Settings

Default: tcpip

tcpip

Applies a TCP/IP transport mechanism. The MEX-file name is ext_comm.

Tip

The MEX-file name displayed next to Transport layer cannot be edited in the
Configuration Parameters dialog box. For targets provided by MathWorks, the value is
specified in matlabroot/toolbox/simulink/simulink/extmode_transports.m.

Dependency

This parameter is enabled by the External mode check box.

Command-Line Information
Parameter: ExtModeTransport
Type: integer
Value: 0
Default: 0

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Target Interfacing”

MEX-file arguments



4 Configuration Parameters for Simulink Models

4-198

Specify arguments to pass to an External mode interface MEX-file for communicating
with executing targets.

Settings

Default: ''

For TCP/IP interfaces, ext_comm allows three optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')
• Verbosity level (0 for no information or 1 for detailed information)
• TCP/IP server port number (an integer value between 256 and 65535, with a default

of 17725)

Dependency

This parameter is enabled by the External mode check box.

Command-Line Information
Parameter: ExtModeMexArgs
Type: string
Value: valid arguments
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Target Interfacing”
• “Choose Communication Protocol for Client and Server”

Static memory allocation



 Code Generation Pane: Tornado Target

4-199

Control the memory buffer for External mode communication.

Settings

Default: off

 On
Enables the Static memory buffer size parameter for allocating allocate dynamic
memory.

 Off
Uses a static memory buffer for External mode instead of allocating dynamic memory
(calls to malloc).

Tip

To determine how much memory you need to allocate, select verbose mode on the target
to display the amount of memory it tries to allocate and the amount of memory available.

Dependencies

• This parameter is enabled by the External mode check box.
• This parameter enables Static memory buffer size.

Command-Line Information
Parameter: ExtModeStaticAlloc
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure External Mode Options for Code Generation”



4 Configuration Parameters for Simulink Models

4-200

Static memory buffer size

Specify the memory buffer size for External mode communication.

Settings

Default: 1000000

Enter the number of bytes to preallocate for External mode communications buffers in
the target.

Tips

• If you enter too small a value for your application, External mode issues an out-of-
memory error.

• To determine how much memory you need to allocate, select verbose mode on the
target to display the amount of memory it tries to allocate and the amount of memory
available.

Dependency

This parameter is enabled by Static memory allocation.

Command-Line Information
Parameter: ExtModeStaticAllocSize
Type: integer
Value: valid value
Default: 1000000

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Configure External Mode Options for Code Generation”



 Code Generation: Coder Target Pane

4-201

Code Generation: Coder Target Pane

In this section...

“Code Generation: Coder Target Pane Overview (previously “IDE Link Tab Overview”)”
on page 4-202
“Coder Target: Tool Chain Automation Tab Overview” on page 4-202
“Build format” on page 4-204
“Build action” on page 4-205
“Overrun notification” on page 4-207
“Function name” on page 4-209
“Configuration” on page 4-209
“Compiler options string” on page 4-211
“Linker options string” on page 4-212
“System stack size (MAUs)” on page 4-213



4 Configuration Parameters for Simulink Models

4-202

In this section...

“Profile real-time execution” on page 4-214
“Profile by” on page 4-215
“Number of profiling samples to collect” on page 4-216
“Maximum time allowed to build project (s)” on page 4-218
“Maximum time allowed to complete IDE operation (s)” on page 4-219
“Export IDE link handle to base workspace” on page 4-220
“IDE link handle name” on page 4-221
“Source file replacement” on page 4-222

Code Generation: Coder Target Pane Overview (previously “IDE Link Tab
Overview”)

Configure the parameters for:

• Tool Chain Automation — How the coder software interacts with third-party software
build toolchains.

• Target Hardware Resources — The IDE toolchain and properties of the physical
hardware, such as board, operating system, memory, and peripherals.

See Also

• Coder Target: Tool Chain Automation Tab Overview
• Coder Target: Target Hardware Resources Tab Overview

Coder Target: Tool Chain Automation Tab Overview



 Code Generation: Coder Target Pane

4-203

The Tool Chain Automation Tab is only visible under the Coder Target pane.

The following table lists the parameters on the Tool Chain Automation Tab.

• “Build format” on page 4-204
• “Build action” on page 4-205
• “Overrun notification” on page 4-207
• “Function name” on page 4-209
• “Configuration” on page 4-209
• “Compiler options string” on page 4-211
• “Linker options string” on page 4-212
• “System stack size (MAUs)” on page 4-213
•
• “Profile real-time execution” on page 4-214
• “Profile by” on page 4-215
• “Number of profiling samples to collect” on page 4-216



4 Configuration Parameters for Simulink Models

4-204

• “Maximum time allowed to build project (s)” on page 4-218
• “Maximum time allowed to complete IDE operation (s)” on page 4-219
• “Export IDE link handle to base workspace” on page 4-220
• “IDE link handle name” on page 4-221
• “Source file replacement” on page 4-222

Build format

Defines how Simulink Coder software responds when you press Ctrl+B to build your
model.

Settings

Default: Project

Project

Builds your model as an IDE project.
Makefile

Creates a makefile and uses it to build your model.

Dependencies

Selecting Makefile removes the following parameters:

• Code Generation

• Profile real-time execution
• Profile by
• Number of profiling samples to collect

• Link Automation

• Maximum time allowed to build project (s)
• Maximum time allowed to complete IDE operation (s)
• Export IDE link handle to base workspace
• IDE link handle name

Command-Line Information
Parameter: buildFormat



 Code Generation: Coder Target Pane

4-205

Type: string
Value: Project | Makefile
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Project

Traceability Project

Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Build action

Defines how Simulink Coder software responds when you press Ctrl+B to build your
model.

Settings

Default: Build_and_execute

If you set Build format to Project, select one of the following options:

Build_and_execute

Builds your model, generates code from the model, and then compiles and links the
code. After the software links your compiled code, the build process downloads and
runs the executable on the processor.

Create_project

Directs Simulink Coder software to create a new project in the IDE. The command
line equivalent for this setting is Create.

Archive_library

Invokes the IDE Archiver to build and compile your project, but It does not run the
linker to create an executable project. Instead, the result is a library project.

Build



4 Configuration Parameters for Simulink Models

4-206

Builds a project from your model. Compiles and links the code. Does not download
and run the executable on the processor.

Create_processor_in_the_loop_project

Directs the Simulink Coder code generation process to create PIL algorithm object
code as part of the project build.

If you set Build format to Makefile, select one of the following options:

Create_makefile

Creates a makefile. For example, “.mk”. The command line equivalent for this setting
is Create.

Archive_library

Creates a makefile and an archive library. For example, “.a” or “.lib”.
Build

Creates a makefile and an executable. For example, “.exe”.
Build_and_execute

Creates a makefile and an executable. Then it evaluates the execute instruction
under the Execute tab in the current XMakefile configuration.

Dependencies

Selecting Archive_library removes the following parameters:

• Overrun notification
• Function name
• Profile real-time execution
• Number of profiling samples to collect
• Linker options string
• Get from IDE
• Reset
• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Overrun notification



 Code Generation: Coder Target Pane

4-207

• Function name
• Profile real-time execution
• Number of profiling samples to collect
• Linker options string
• Get from IDE
• Reset
• Export IDE link handle to base workspace with the option set to export the

handle

Command-Line Information
Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create | Archive_library |
Create_processor_in_the_loop_project

Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

For more information about PIL and its uses, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic.

Overrun notification

Specifies how your program responds to overrun conditions during execution.

Settings

Default: None



4 Configuration Parameters for Simulink Models

4-208

None

Your program does not notify you when it encounters an overrun condition.
Print_message

Your program prints a message to standard output when it encounters an overrun
condition.

Call_custom_function

When your program encounters an overrun condition, it executes a function that you
specify in Function name.

Tips

• The definition of the standard output depends on your configuration.

Dependencies

Selecting Call_custom_function enables the Function name parameter.

Setting this parameter to Call_custom_function enables the Function name
parameter.

Command-Line Information
Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function
Traceability Print_message

Efficiency None

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.



 Code Generation: Coder Target Pane

4-209

Function name

Specifies the name of a custom function your code runs when it encounters an overrun
condition during execution.

Settings

No Default

Dependencies

This parameter is enabled by setting Overrun notification to
Call_custom_function.

Command-Line Information
Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String
Traceability String
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Configuration

Sets the Configuration for building your project from the model.

Settings

Default: Custom



4 Configuration Parameters for Simulink Models

4-210

Custom

Lets the user apply a specialized combination of build and optimization settings.

Custom applies the same settings as the Release project configuration in IDE, except:

• The compiler options do not use optimizations.
• The memory configuration specifies a memory model that uses Far Aggregate

for data and Far for functions.

Debug

Applies the Debug Configuration defined by the IDE to the generated project and
code.

Release

Applies the Release project configuration defined by the IDE to the generated
project and code.

Dependencies

• Selecting Custom disables the reset options for Compiler options string and
Linker options string.

• Selecting Release sets the Compiler options string to the settings defined by the
IDE.

• Selecting Debug sets the Compiler options string to the settings defined by the
IDE.

.

Command-Line Information
Parameter: projectOptions
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom or Debug
Traceability Custom, Debug, Release



 Code Generation: Coder Target Pane

4-211

Application Setting

Efficiency Release

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Compiler options string

To determine the degree of optimization provided by the optimizing compiler, enter the
optimization level to apply to files in your project. For details about the compiler options,
refer to your IDE documentation. When you create new projects, the coder product does
not set optimization flags.

Settings

Default: No default

Tips

• Use spaces between options.
• Verify that the options are valid. The software does not validate the option string.
• Setting Configuration to Custom applies the Custom compiler options defined by

coder software. Custom does not use optimizations.
• Setting Configuration to Debug applies the debug settings defined by the IDE.
• Setting Configuration to Release applies the release settings defined by the IDE.

Command-Line Information
Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom



4 Configuration Parameters for Simulink Models

4-212

Application Setting

Traceability Custom

Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Linker options string

To specify the options provided by the linker during link time, you enter the linker
options as a string. For details about the linker options, refer to your IDE documentation.
When you create new projects, the coder product does not set linker options.

Settings

Default: No default

Tips

• Use spaces between options.
• Verify that the options are valid. The software does not validate the options string.

Dependencies

Setting Build action to Archive_library removes this parameter.

Command-Line Information
Parameter: linkerOptionsStr
Type: string
Value: valid linker option
Default: none

Recommended Settings

Application Setting

Debugging No impact



 Code Generation: Coder Target Pane

4-213

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

System stack size (MAUs)

Enter the amount of memory that is available for allocating stack data. Block output
buffers are placed on the stack until the stack memory is fully allocated. After that, the
output buffers go in global memory.

This parameter is used in targets to allocate the stack size for the generated application.
For example, with embedded processors that are not running an operating system,
this parameter determines the total stack space that can be used for the application.
For operating systems such as Linux or Windows, this value specifies the stack space
allocated per thread.

This parameter also affects the “Maximum stack size (bytes)” parameter, located in the
Optimization > Signals and Parameters pane.

Settings

Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs). An MAU is typically 1
byte, but its size can vary by target processor.

• The software does not verify the value you entered is valid.

Dependencies

Setting Build action to Archive_library removes this parameter.



4 Configuration Parameters for Simulink Models

4-214

When you set the System target file parameter on the Code Generation pane to
idelink_ert.tlc or idelink_grt.tlc, the software sets the Maximum stack size
parameter on the Optimization > Signals and Parameters pane to Inherit from
target and makes it non-editable. In that case, the Maximum stack size parameter
compares the value of (System stack size/2) with 200,000 bytes and uses the smaller of
the two values.

Command-Line Information
Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int
Traceability int
Efficiency int
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Profile real-time execution

Enables real-time execution profiling in the generated code by adding instrumentation
for task functions or atomic subsystems.

Settings

Default: Off

 On
Adds instrumentation to the generated code to support execution profiling and
generate the profiling report.

 Off



 Code Generation: Coder Target Pane

4-215

Does not instrument the generated code to produce the profile report.

Dependencies

This parameter adds Number of profiling samples to collect and Profile by.

Selecting this parameter enables Export IDE link handle to base workspace and
makes it non-editable, since the coder software must create a handle.

Setting Build action to Archive_library or Create_processor_in_the_loop
project removes this parameter.

Command-Line Information
Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

For more information about using profiling, refer to the “profile” and “Profiling Code
Execution in Real-Time” topics..

Profile by

Defines which execution profiling technique to use.

Settings

Default: Task



4 Configuration Parameters for Simulink Models

4-216

Task

Profiles model execution by the tasks in the model.
Atomic subsystem

Profiles model execution by the atomic subsystems in the model.

Dependencies

Selecting Real-time execution profiling enables this parameter.

Command-Line Information
Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

For more information about PIL and its uses, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic.

For more information about using profiling, refer to the “profile” and “Profiling Code
Execution in Real-Time” topics.

Number of profiling samples to collect

Specify the size of the buffer that holds the profiling samples. Enter a value that is 2
times the number of profiling samples.



 Code Generation: Coder Target Pane

4-217

Each task or subsystem execution instance represents one profiling sample. Each
sample requires two memory locations, one for the start time and one for the end time.
Consequently, the size of the buffer is twice the number of samples.

Sample collection begins with the start of code execution and ends when the buffer is full.

The profiling data is held in a statically sited buffer on the target processor.

Settings

Default: 100

Minimum: 2

Maximum: Buffer capacity

Tips

• Data collection stops when the buffer is full, but the application and processor
continue running.

• Real-time task execution profiling works with hardware only. Simulators do not
support the profiling feature.

Dependencies

This parameter is enabled by Profile real-time execution.

Command-Line Information
Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

Recommended Settings

Application Setting

Debugging 100
Traceability No impact
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-218

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Maximum time allowed to build project (s)

Specifies how long, in seconds, the software waits for the project build process to return a
completion message.

Settings

Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the completion message
in the allotted time.

• This timeout value does not depend on the global timeout value in a IDE_Obj object
or the Maximum time allowed to complete IDE operation timeout value.

Dependency

This parameter is disabled when you set Build action to Create_project.

Command-Line Information
Parameter:ideObjBuildTimeout
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact



 Code Generation: Coder Target Pane

4-219

Application Setting

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Maximum time allowed to complete IDE operation (s)

specifies how long, in seconds, the software waits for IDE functions, such as read or
write, to return completion messages.

Settings

Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message in the
allotted time.

• This timeout value does not depend on the global timeout value in a IDE_Obj object
or the Maximum time allowed to build project (s) timeout value

Command-Line Information
Parameter:'ideObjTimeout'
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact



4 Configuration Parameters for Simulink Models

4-220

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Export IDE link handle to base workspace

Directs the software to export the IDE_Obj object to your MATLAB workspace.

Settings

Default: On

 On
Directs the build process to export the IDE_Obj object created to your MATLAB
workspace. The new object appears in the workspace browser. Selecting this option
enables the IDE link handle name option.

 Off
prevents the build process from exporting the IDE_Obj object to your MATLAB
software workspace.

Dependency

Selecting Profile real-time execution enables Export IDE link handle to base
workspace and makes it non-editable, since the coder software must create a handle.

Selecting Export IDE link handle to base workspace enables IDE link handle
name.

Command-Line Information
Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On



 Code Generation: Coder Target Pane

4-221

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

IDE link handle name

specifies the name of the IDE_Obj object that the build process creates.

Settings

Default: IDE_Obj

• Enter a valid C variable name, without spaces.
• The name you use here appears in the MATLAB workspace browser to identify the

IDE_Obj object.
• The handle name is case sensitive.

Dependency

This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information
Parameter: ideObjName
Type: string
Value:
Default: IDE_Obj

Recommended Settings

Application Setting

Debugging Enter a valid C program variable name, without
spaces

Traceability No impact
Efficiency No impact



4 Configuration Parameters for Simulink Models

4-222

Application Setting

Safety precaution No impact

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.

Source file replacement

Selects the diagnostic action to take if the coder software detects conflicts that you are
replacing source code with custom code.

Settings

Default: warn

none

Does not generate warnings or errors when it finds conflicts.
warning

Displays a warning.
error

Terminates the build process and displays an error message that identifies which file
has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software detects custom
code replacement. You see warning messages as the build progresses.

• Select error the first time you build your project after you specify custom code to
use. The error messages can help you diagnose problems with your custom code
replacement files.

• Select none when you do not want to see multiple messages during your build.
• The messages apply to Simulink Coder Custom Code replacement options as well.

Command-Line Information
Parameter: DiagnosticActions
Type: string
Value: none | warning | error



 Code Generation: Coder Target Pane

4-223

Default: warning

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also

For more information, refer to the “Code Generation Pane: Coder Target” topic.



4 Configuration Parameters for Simulink Models

4-224

Parameter Reference

In this section...

“Recommended Settings Summary” on page 4-224
“Parameter Command-Line Information Summary” on page 4-248

Recommended Settings Summary

The following table summarizes the impact of each configuration parameter on
debugging, traceability, efficiency, and safety considerations, and indicates the factory
default configuration settings for the GRT and ERT targets, unless otherwise specified.

For parameters that are available only when an ERT target is specified, see the
“Recommended Settings Summary” in the Embedded Coder documentation.

For additional details, click the links in the Configuration Parameter column.

Mapping Application Requirements to the Solver Pane

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Start time” No impact No impact No impact 0.0 0.0 seconds
“Stop time” No impact No impact No impact A positive

value
10.0 seconds

“Type” Fixed-step Fixed-

step

Fixed-

step

Fixed-step Variable-step

(you must change
to Fixed-step for
code generation)

“Solver” No impact No impact No impact Discrete

(no

continuous

states)

ode3 (Bogacki-

Shampine)

“Periodic sample
time constraint”

No impact No impact No impact Specified

or Ensure
sample

Unconstrained



 Parameter Reference

4-225

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

time

independent

“Sample time
properties”

No impact No impact No impact Period, offset,
and priority
of each
sample time
in the model;
faster sample
times must
have higher
priority
than slower
sample times

''

“Tasking mode
for periodic
sample times”

No impact No impact No impact No impact Auto

“Automatically
handle rate
transition for
data transfer”

No impact No impact
(for
simulation
and during
development)

Off (for
production
code
generation)

No impact Off Off

Mapping Application Requirements to the Data Import/Export Pane

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Input” No impact No impact No impact No impact
(GRT)

Off



4 Configuration Parameters for Simulink Models

4-226

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Off (ERT)
“Initial state” No impact No impact No impact No impact

(GRT)

Off (ERT)

Off

“Time” No impact No impact No impact No impact
(GRT)

Off (ERT)

On

“States” No impact No impact No impact No impact
(GRT)

Off (ERT)

Off

“Output” No impact No impact No impact No impact
(GRT)

Off (ERT)

On

“Final states” No impact No impact No impact No impact
(GRT)

Off (ERT)

Off

“Signal logging” No impact No impact No impact No impact
(GRT)

Off (ERT)

On

“Record logged
workspace data
in Simulation
Data Inspector”

No impact No impact No impact No impact
(GRT)

Off (ERT)

Off

“Limit data
points to last”

No impact No impact No impact No impact
(GRT)

Off (ERT)

On



 Parameter Reference

4-227

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Decimation” No impact No impact No impact No impact
(GRT)

Off (ERT)

1

“Format” No impact No impact No impact No impact
(GRT)

Off (ERT)

Array

“Output options” No impact No impact No impact No impact
(GRT)

Off (ERT)

Refine output

“Refine factor” No impact No impact No impact No impact
(GRT)

Off (ERT)

1

“Output times ” No impact No impact No impact No impact
(GRT)

Off (ERT)

'[]'

Mapping Application Requirements to the Optimization Pane: General Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Block reduction” Off (GRT)

No impact
(ERT)

Off On Off On

“Implement
logic signals as
Boolean data (vs.
double)”

No impact No impact On On On



4 Configuration Parameters for Simulink Models

4-228

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Conditional
input branch
execution”

No impact On On
(execution)

No impact
(ROM,
RAM)

No impact On

“Application
lifespan (days)”

No impact No impact Finite
value

inf inf

“Use memset to
initialize floats
and doubles to
0.0”

No impact No impact On*
(execution,
ROM)

No impact
(RAM)

No impact On

“Use floating-
point
multiplication to
handle net slope
corrections”

No impact No impact On (when
target
hardware
supports
efficient
multiplication)
Off
(otherwise)

Off Off

“Remove code
from floating-
point to integer
conversions that
wraps out-of-
range values”

Off Off On
(execution,
ROM)

No impact
(RAM)

Off (GRT)

On (ERT)

Off

“Remove code
from floating-
point to integer
conversions with
saturation that

Off Off On Off (GRT)

On (ERT)

On



 Parameter Reference

4-229

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

maps NaN to
zero”
*The command-line value is reverse of the listed value.

Mapping Application Requirements to the Optimization Pane: Signals and Parameters Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Inline
parameters”

Off (GRT)

On (ERT)

On On No impact Off

“Signal storage
reuse”

Off Off On No impact On

“Enable local
block outputs”

Off No impact On No impact On

“Eliminate
superfluous
local variables
(Expression
folding)”

Off No impact
(GRT)

Off (ERT)

On No impact On

“Optimize global
data access”

Off Off No impact
(execution)

On (ROM,
RAM)

No impact Off

“Loop unrolling
threshold”

No impact No impact >0 >1 5

“Maximum stack
size (bytes)”

No impact No impact No impact No impact Inherit from

target

“Use memcpy
for vector
assignment”

No impact No impact On No impact On



4 Configuration Parameters for Simulink Models

4-230

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Memcpy
threshold (bytes)”

No impact No impact Accept
default or
determine
target-
specific
optimal
value

No impact 64

“Reuse local
block outputs”

Off Off On No impact On

“Inline invariant
signals”

Off Off On No impact Off

Mapping Application Requirements to the Optimization Pane: Stateflow Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Use bitsets for
storing state
configuration”

Off Off Off
(execution,
ROM)

On (RAM)

No impact Off

“Use bitsets for
storing Boolean
data”

Off Off Off
(execution,
ROM)

On (RAM)

No impact Off

Mapping Application Requirements to the Diagnostics Pane: Solver Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Algebraic loop” error No impact No impact error warning



 Parameter Reference

4-231

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Minimize
algebraic loop”

No impact No impact No impact error warning

“Block priority
violation”

No impact No impact No impact error warning

“Consecutive
zero-crossings
violation”

No impact No impact No impact warning or
error

error

“Unspecified
inheritability of
sample time”

No impact No impact No impact error warning

“Solver data
inconsistency”

warning No impact none No impact warning

“Automatic
solver parameter
selection”

No impact No impact No impact error warning

Mapping Application Requirements to the Diagnostics Pane: Sample Time Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Source block
specifies -1
sample time”

No impact No impact No impact error none

“Discrete used as
continuous”

No impact No impact No impact error warning

“Multitask rate
transition”

No impact No impact No impact error error

“Single task rate
transition”

No impact No impact No impact none or
error

none

“Multitask
conditionally

No impact No impact No impact error error



4 Configuration Parameters for Simulink Models

4-232

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

executed
subsystem”
“Tasks with
equal priority”

No impact No impact No impact none or
error

warning

“Enforce sample
times specified
by Signal
Specification
blocks”

No impact No impact No impact error warning

Mapping Application Requirements to the Diagnostics Pane: Data Validity Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Signal
resolution”

No impact No impact No impact Explicit

only

Explicit only

“Division by
singular matrix”

No impact No impact No impact error none

“Underspecified
data types”

No impact No impact No impact error none

“Simulation
range checking”

warning or
error

warning or
error

none error none

“Wrap on
overflow”

No impact No impact No impact error warning

“Saturate on
overflow”

No impact No impact No impact error warning

“Inf or NaN block
output”

No impact No impact No impact error none

“"rt" prefix for
identifiers”

No impact No impact No impact error error



 Parameter Reference

4-233

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Detect
downcast”

No impact No impact No impact error error

“Detect overflow” No impact No impact No impact error error

“Detect
underflow”

No impact No impact No impact error none

“Detect precision
loss”

No impact No impact No impact error error

“Detect loss of
tunability”

No impact No impact No impact error none

“Detect read
before write”

No impact No impact No impact error Enable all as

warnings

“Detect write
after read”

No impact No impact No impact error Enable all as

warning

“Detect write
after write”

No impact No impact No impact error Enable all as

errors

“Multitask data
store”

No impact No impact No impact error warning

“Duplicate data
store names”

warning No impact none No impact none

“Check
undefined
subsystem initial
output”

No impact No impact No impact On On

“Check
preactivation
output of
execution
context”

No impact No impact No impact On Off

“Check runtime
output of

No impact No impact No impact On Off



4 Configuration Parameters for Simulink Models

4-234

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

execution
context”
“Model
Verification
block enabling”

No impact No impact No impact No impact
(GRT)

Disable

all (ERT)

Use local

settings

Mapping Application Requirements to the Diagnostics Pane: Type Conversion Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Unnecessary
type
conversions”

No impact No impact No impact warning none

“Vector/matrix
block input
conversion”

No impact No impact No impact error none

“32-bit integer to
single precision
float conversion”

No impact No impact No impact warning warning

Mapping Application Requirements to the Diagnostics Pane: Connectivity Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Signal label
mismatch”

No impact No impact No impact error none

“Unconnected
block input
ports”

No impact No impact No impact error warning



 Parameter Reference

4-235

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Unconnected
block output
ports”

No impact No impact No impact error warning

“Unconnected
line”

No impact No impact No impact error none

“Unspecified bus
object at root
Outport block”

No impact No impact No impact error warning

“Element name
mismatch”

No impact No impact No impact error warning

“Mux blocks used
to create bus
signals”

No impact No impact No impact error error

“Bus signal
treated as vector”

No impact No impact No impact error warning

“Invalid function-
call connection”

No impact No impact No impact error error

“Context-
dependent
inputs”

No impact No impact No impact Enable all Use local

settings

Mapping Application Requirements to the Diagnostics Pane: Compatibility Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“S-function
upgrades
needed”

No impact No impact No impact error none

Mapping Application Requirements to the Diagnostics Pane: Model Referencing Tab



4 Configuration Parameters for Simulink Models

4-236

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Model block
version
mismatch”

No impact No impact No impact none none

“Port and
parameter
mismatch”

No impact No impact No impact error none

“Model
configuration
mismatch”

No impact No impact No impact warning none

“Invalid
root Inport/
Outport block
connection”

No impact No impact No impact error none

“Unsupported
data logging”

No impact No impact No impact error warning

Mapping Application Requirements to the Diagnostics Pane: Saving Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Block diagram
contains disabled
library links”

No impact No impact No impact No impact warning

“Block diagram
contains
parameterized
library links”

No impact No impact No impact No impact none

Mapping Application Requirements to the Diagnostics Pane: Stateflow Tab



 Parameter Reference

4-237

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Unused data
and events”

warning No impact No impact
(for
simulation
and during
development)

none (for
production
code
generation)

warning warning

“Unexpected
backtracking”

warning No impact No impact error warning

“Invalid input
data access
in chart
initialization”

warning No impact No impact error warning

“No
unconditional
default
transitions”

warning No impact No impact
(for
simulation
and during
development)

none (for
production
code
generation)

error warning

“Transition
outside natural
parent”

warning No impact No impact
(for
simulation
and during
development)

none (for
production

error warning



4 Configuration Parameters for Simulink Models

4-238

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

code
generation)

Mapping Application Requirements to the Hardware Implementation Pane

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Device vendor” No impact No impact No impact No impact Generic

“Device type” No impact No impact No impact No impact Unspecified

(assume 32–bit

Generic)

“Number of bits” No impact No impact Target
specific

No impact for
simulation
and during
development

Match
operation of
compiler and
hardware
for code
generation

char 8, short 16,
int 32, long 32,
long long 64,
float 32, double
64, native 32,
pointer 32

“Largest atomic
size”

No impact No impact Target
specific

No impact for
simulation
and during
development

Match
operation of
compiler and
hardware
for code
generation

integer Char,
floating-point None



 Parameter Reference

4-239

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Byte ordering” No impact No impact No impact No impact Unspecified

“Signed integer
division rounds
to”

No impact for
simulation
and during
development

Undefined

for
production
code
generation

No
impact for
simulation
and during
development

Zero or
Floor for
production
code
generation

No
impact for
simulation
and during
development

Zero for
production
code
generation

No impact for
simulation
and during
development

Floor for
production
code
generation

Undefined

“Shift right on a
signed integer as
arithmetic shift”

No impact No impact On No impact On

“Enable long
long”

No impact No impact Target
specific

No impact for
simulation
and during
development

Match
operation of
compiler and
hardware for
production
code
generation

Off

“Test hardware
is the same as
production
hardware”

No impact No impact No impact No impact On

Mapping Application Requirements to the Model Referencing Pane



4 Configuration Parameters for Simulink Models

4-240

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Rebuild” No impact No impact No impact If any

changes

detected or
Never

If you use
the Never
setting,
then set
the Never
rebuild
diagnostic
parameter
to Error if
rebuild

required

If any changes

detected

“Never rebuild
diagnostic”

No impact No impact No impact error if

rebuild

required

error if rebuild

required

“Enable parallel
model reference
builds”

No impact No impact No impact No impact Off

“MATLAB
worker
initialization for
builds”

No impact No impact No impact No impact None

“Total number of
instances allowed
per top model”

No impact No impact No impact No impact Multiple

“Pass fixed-size
scalar root inputs
by value for code
generation”

No impact No impact No impact Off Off



 Parameter Reference

4-241

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Minimize
algebraic loop
occurrences”

No impact No impact No impact Off Off

“Propagate sizes
of variable-size
signals”

No impact No impact No impact Off Infer from

blocks in model

“Model
dependencies”

No impact No impact No impact No impact ''

Mapping Application Requirements to the Simulation Target Pane: General Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Enable
debugging/
animation”

On No impact Off On On

“Detect wrap on
overflow (with
debugging)”

On No impact Off On On

“Ensure memory
integrity”

On On Off On On

“Echo
expressions
without
semicolons”

On No impact Off No impact On

“Ensure
responsiveness”

On On Off On On

“Simulation
target build
mode”

No impact No impact No impact No impact Incremental

build

Mapping Application Requirements to the Simulation Target Pane: Symbols Tab



4 Configuration Parameters for Simulink Models

4-242

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Reserved
names”

No impact No impact No impact No impact {}

Mapping Application Requirements to the Simulation Target Pane: Custom Code Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Parse custom
code symbols”

On No impact No impact On On

“Source file” No impact No impact No impact No impact ''

“Header file” No impact No impact No impact No impact ''

“Initialize
function”

No impact No impact No impact No impact ''

“Terminate
function”

No impact No impact No impact No impact ''

“Include
directories”

No impact No impact No impact No impact ''

“Source files” No impact No impact No impact No impact ''

“Libraries” No impact No impact No impact No impact ''

Mapping Application Requirements to the Code Generation Pane: General Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

System target
file

No impact No impact No impact No impact
(GRT)

ERT based
(ERT)

grt.tlc

Language No impact No impact No impact No impact C



 Parameter Reference

4-243

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Compiler
optimization
level

Optimizations

off (faster

builds)

Optimizations

off

(faster

builds)

Optimizations

on (faster

runs)

(execution)

No impact
(ROM, RAM)

No impact Optimizations

off (faster

builds)

Custom
compiler
optimization
flags

Optimizations

off (faster

builds)

Optimizations

off

(faster

builds)

Optimizations

on (faster

runs)

No impact Optimizations

off (faster

builds)

Generate
makefile

No impact No impact No impact No impact On

Make command No impact No impact No impact make_rtw make_rtw

Template
makefile

No impact No impact No impact No impact grt_default_tmf

“Select
objective” on
page 4-21

Debugging Not
applicable for
GRT-based
targets

Execution

efficiency

Not
applicable for
GRT-based
targets

Unspecified

“Check
model before
generating
code” on page
4-26

On (proceed

with

warnings)

or On
(stop for

warnings)

On

(proceed

with

warnings)

or On
(stop for

warnings)

On (proceed

with

warnings)

or On
(stop for

warnings)

On

(proceed

with

warnings)

or On
(stop for

warnings)

Off

Generate code
only

Off No impact No impact No impact Off

Mapping Application Requirements to the Code Generation Pane: Report Tab



4 Configuration Parameters for Simulink Models

4-244

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

“Create code
generation
report” on page
4-33

On On No impact On Off

“Open report
automatically” on
page 4-36

On On No impact No impact Off

Mapping Application Requirements to the Code Generation Pane: Comments Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Include
comments

On On No impact On On

Simulink block /
Stateflow object
comments

On On No impact On On

Show eliminated
blocks

On On No impact On Off

Verbose
comments for
Simulink Global
storage class

On On No impact On Off

Operator
Annotations

No impact On No impact On Off

Mapping Application Requirements to the Code Generation Pane: Symbols Tab



 Parameter Reference

4-245

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Maximum
identifier length

Valid value >30 No impact >30 31

Use the same
reserved names
as Simulation
Target

No impact No impact No impact No impact Off

Reserved names No impact No impact No impact No impact {}

Mapping Application Requirements to the Code Generation Pane: Custom Code Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Use the same
custom code
settings as
Simulation
Target

No impact No impact No impact No impact Off

Source file No impact No impact No impact No impact ''

Header file No impact No impact No impact No impact ''

Initialize
function

No impact No impact No impact No impact ''

Terminate
function

No impact No impact No impact No impact ''

Include
directories

No impact No impact No impact No impact ''

Source files No impact No impact No impact No impact ''

Libraries No impact No impact No impact No impact ''

Mapping Application Requirements to the Code Generation Pane: Debug Tab



4 Configuration Parameters for Simulink Models

4-246

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Verbose build On No impact No impact On On
Retain .rtw file On No impact No impact No impact Off
“Profile TLC” on
page 4-112

On No impact No impact No impact Off

Start TLC
debugger when
generating code

On No impact No impact No impact Off

Start TLC
coverage when
generating code

On No impact No impact No impact Off

Enable TLC
assertion

On No impact No impact On Off

Mapping Application Requirements to the Code Generation Pane: Interface Tab

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Standard math
library

No impact No impact Valid
library

No impact C89/C90 (ANSI)

Code
replacement
library

No impact No impact Valid
library

No impact None

Shared code
placement

Shared

location

(GRT)

No impact
(ERT)

Shared

location

(GRT)

No impact
(ERT)

No impact
(execution,
RAM)

Shared

location

(ROM)

No impact Auto

Support non-
finite numbers

No impact No impact Off
(Execution,
ROM)

Off On



 Parameter Reference

4-247

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

No impact
(RAM)

“Code interface
packaging”

No impact No impact Reusable

function

or C++
class

No impact Nonreusable

function if
Language is set
to C; C++ class if
Language is set to
C++

“Multi-instance
code error
diagnostic”

Warning or
Error

No impact None No impact Error

“Classic call
interface”

No impact Off Off
(execution,
ROM), No
impact
(RAM)

Off Off (except On for
GRT models created
before R2012a)

Single output/
update function

On On On On On

MAT-file logging On No impact Off Off On (GRT)

Off (ERT)
MAT-file variable
name modifier

No impact No impact No impact No impact rt_

Interface No impact No impact No impact No impact
(GRT)

None (ERT)

None

Generate C API
for: signals

No impact No impact No impact No impact On

Generate C API
for: parameters

No impact No impact No impact No impact On



4 Configuration Parameters for Simulink Models

4-248

Settings for Building CodeConfiguration
Parameter Debugging Traceability Efficiency Safety

precaution

Factory Default

Generate C API
for: states

No impact No impact No impact No impact Off

Generate C API
for: root-level I/O

No impact No impact No impact No impact Off

Transport layer No impact No impact No impact No impact tcpip

MEX-file
arguments

No impact No impact No impact No impact ''

Static memory
allocation

No impact No impact No impact No impact Off

“Static memory
buffer size” on
page 4-200

No impact No impact No impact No impact 1000000

Parameter Command-Line Information Summary

The following table lists Simulink Coder parameters that you can use to tune model
and target configurations. The table provides brief descriptions, valid values (bold type
highlights defaults), and a mapping to Configuration Parameter dialog box equivalents.

Use the get_param and set_param commands to retrieve and set the values of the
parameters on the MATLAB command line or programmatically in scripts.

The Configuration Wizard in the Embedded Coder product provides buttons and
scripts for customizing code generation. For information on using Configuration Wizard
features, see “Use Configuration Wizard Blocks” in the Embedded Coder documentation.

For general information about Simulink parameters, see “Configuration Parameters
Dialog Box Overview”. For information on using get_param and set_param to tune the
parameters for various model configurations, see “Tune Parameters”.

For parameters that are specific to the ERT target, or targets based on the ERT
target, see “Parameter Command-Line Information Summary” in the Embedded Coder
documentation.



 Parameter Reference

4-249

Note Parameters that are specific to Stateflow or Fixed-Point Designer™ products are
marked with (Stateflow) and (Fixed-Point Designer), respectively.

The default setting for a parameter might vary for different targets.

Command-Line Information: Optimization Pane: General Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

BooleanDataType

off, on

Optimization >
Implement logic
signals as Boolean
data (vs. double)

Control the output data type of blocks
that generate logic signals.

EfficientFloat2IntCast

off, on
Optimization >
Remove code from
floating-point to
integer conversions
that wrap out-of-
range values

Remove wrapping code that handles
out-of-range floating-point to integer
conversion results.

EfficientMapNaN2IntZero

off, on
Optimization >
Remove code from
floating-point to
integer conversions
with saturation that
maps NaN to zero

Remove code that handles floating-
point to integer conversion results for
NaN values.

InitFltsAndDblsToZero

off, on
Optimization > Use
memset to initialize
floats and doubles to
0.0

Optimize initialization of storage
for float and double values. Set
this option if the representation
of floating-point zero used by your
compiler and target CPU is identical
to the integer bit pattern 0.

LifeSpan

string

Optimization >
Application lifespan
(days)

Optimize the size of counters used to
compute absolute and elapsed time,
using the specified application life
span value.



4 Configuration Parameters for Simulink Models

4-250

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

NoFixptDivByZeroProtection

(Fixed-Point Designer)
off, on

Optimization >
Remove code that
protects against
division arithmetic
exceptions

Suppress generation of code that
guards against division by zero for
fixed-point data.

UseFloatMulNetSlope (Fixed-
Point Designer)
off, on

Optimization >
Use floating-point
multiplication to
handle net slope
corrections

Use floating-point multiplication
to perform net slope correction for
floating-point to fixed-point casts.

UseDivisionForNetSlopeComputation

(Fixed-Point Designer)
off, on, Use division for
reciprocals of integers

only

Optimization > Use
division for fixed-
point net slope
computation

Perform net slope computation using
division when simplicity and accuracy
conditions are met.

Command-Line Information: Optimization Pane: Signals and Parameters Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

BufferReuse

off, on

Optimization
> Signals and
Parameters > Reuse
local block outputs

Reuse local (function) variables for
block outputs wherever possible.
Selecting this option trades code
traceability for code efficiency.

EnableMemcpy

off, on
Optimization
> Signals and
Parameters > Use
memcpy for vector
assignment

Optimize code generated for vector
assignment by replacing for loops
with memcpy function calls.

EnhancedBackFolding

off, on
Optimization
> Signals and
Parameters >
Minimize data copies
between local and
global variables

Reuse existing global variables to
store temporary results.



 Parameter Reference

4-251

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

ExpressionFolding

off, on
Optimization
> Signals and
Parameters >
Eliminate superfluous
local variables
(Expression folding) >
Interface

Collapse block computations into
single expressions wherever possible.
This improves code readability and
efficiency.

InlineInvariantSignals

off, on
Optimization
> Signals and
Parameters > Inline
invariant signals

Precompute and inline the values of
invariant signals in the generated
code.

LocalBlockOutputs

off, on
Optimization
> Signals and
Parameters > Enable
local block outputs

Declare block outputs in local
(function) scope wherever possible to
reduce global RAM usage.

MemcpyThreshold

int - 64

Optimization
> Signals and
Parameters > Memcpy
threshold (bytes)

Specify the minimum array size in
bytes for which memcpy function
calls should replace for loops
in the generated code for vector
assignments.

RollThreshold

int - 5

Optimization
> Signals and
Parameters > Loop
unrolling threshold

Specify the minimum signal width for
which a for loop is to be generated.

MaxStackSize

<Specify a value>, Inherit
from target

Optimization
> Signals and
Parameters >
Maximum stack size
(bytes)

Specify the maximum stack size in
bytes for your model.

Command-Line Information: Optimization Pane: Stateflow Tab



4 Configuration Parameters for Simulink Models

4-252

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

DataBitsets (Stateflow)
off, on

Optimization >
Stateflow > Use
bitsets for storing
Boolean data

Use bit sets for storing Boolean data.

StateBitsets (Stateflow)
off, on

Optimization >
Stateflow > Use
bitsets for storing
state configuration

Use bit sets for storing state
configuration.

Command-Line Information: Code Generation Pane: General Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CheckMdlBeforeBuild

string - off, warning, error
Code Generation >
Check model before
generating code

Specify whether to run Code
Generation Advisor checks before
generating code.

GenCodeOnly

string - off, on
Code Generation >
Generate code only

Generate source code, but do not
execute the makefile to build an
executable.

GenerateMakefile

string - off, on
Code Generation >
Generate makefile

Specify whether to generate a
makefile during the build process for
a model.

MakeCommand

string - make_rtw
Code Generation >
Make command

Specify the make command and
optional arguments to be used to
generate an executable for the model.

ObjectivePriorities (GRT)
string - {''}, {'Debugging'},
{'Execution efficiency'}

Code Generation >
Select objective

Specify the code generation objectives
to use with the Code Generation
Advisor.

ObjectivePriorities (ERT)
string - {''}, {'Efficiency'},
{'Traceability'}, {'Safety
precaution'}, {'Debugging'}

Code Generation >
Set Objectives

Specify and prioritize the code
generation objectives to use with the
Code Generation Advisor.

RTWCompilerOptimization

string - Off, On, Custom
Code Generation
> Compiler
optimization level

Use this parameter to trade off
compilation time against run time for
your model code without having to



 Parameter Reference

4-253

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

supply compiler-specific flags to other
levels of the Simulink Coder build
process.
Off - Turn compiler optimizations off
for faster builds
On - Turn compiler optimizations on
for faster code execution
Custom - Specify custom compiler
optimization flags via the
RTWCustomCompilerOptimizations

parameter
RTWCustomCompiler

Optimizations

string - '', unquoted string of
compiler optimization flags

Code Generation >
Custom compiler
optimization flags

If you specified Custom to the
RTWCompilerOptimization

parameter, use this parameter to
specify custom compiler optimization
flags, for example, -O2.

SaveLog

off, on
Code Generation >
Save build log

Save build log.

SystemTargetFile

string - grt.tlc
Code Generation >
System target file

Specify a system target file.

TargetLang

string - C, C++
Code Generation >
Language

Specify whether to generate C or C++
code.

TemplateMakefile

string - grt_default_tmf
Code Generation >
Template makefile

Specify the current template makefile
for building a Simulink Coder target.

Command-Line Information: Code Generation Pane: Report Tab

Parameter and Values Configuration Parameters Dialog
Box Equivalent

Description

GenerateReport

string - off, on
Code Generation > Report
> Create code generation
report

Document the generated C or C+
+ code in an HTML report.

LaunchReport

string - off, on
Code Generation >
Report > Launch report
automatically

Display the HTML report after
code generation completes.



4 Configuration Parameters for Simulink Models

4-254

Command-Line Information: Code Generation Pane: Comments Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

ForceParamTrailComments

string - off, on
Code Generation
> Comments >
Verbose comments
for SimulinkGlobal
storage class

Specify that comments be included in
the generated file. To reduce file size,
the model parameters data structure
is not commented when there are
more than 1000 parameters.

GenerateComments

string - off, on
Code Generation >
Comments > Include
comments

Include comments in generated code.

OperatorAnnotations

string - off, on
Code Generation >
Comments > Operator
annotations

Specify whether to include operator
annotations in the generated code as
comments.

ShowEliminatedStatement

string - off, on
Code Generation >
Comments > Show
eliminated blocks

Show statements for eliminated
blocks as comments in the generated
code.

SimulinkBlockComments

string - off, on
Code Generation >
Comments > Simulink
block / Stateflow
object comments

Insert Simulink block and Stateflow
object names as comments above the
generated code for each block.

Command-Line Information: Code Generation Pane: Symbols Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

MaxIdLength

int - 31

Code Generation >
Symbols > Maximum
identifier length

Specify the maximum number
of characters that can be used in
generated function, type definition,
and variable names.

ReservedNameArray

string array - {}
Code Generation >
Symbols > Reserved
names

Enter the names of variables or
functions in the generated code that
match the names of variables or
functions specified in custom code to
avoid name conflicts.

UseSimReservedNames Code Generation >
Symbols > Use the

Specify whether to use the same
reserved names as those specified in



 Parameter Reference

4-255

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

string - off, on same reserved names
as Simulation Target

the Simulation Target > Symbols
pane.

Command-Line Information: Code Generation Pane: Custom Code Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CustomHeaderCode

string - ''
Code Generation
> Custom Code >
Header file

Specify code to appear near the top of
the generated model header file.

CustomInclude

string - ''
Code Generation
> Custom Code >
Include directories

Specify a space-separated list of
include folders to add to the include
path when compiling the generated
code.

Note: If your list includes Windows
path strings that contain spaces, each
instance must be enclosed in double
quotes within the argument string,
for example,

'C:\Project "C:\Custom Files"'

CustomInitializer

string - ''
Code Generation >
Custom Code

Specify code to appear in the
generated model initialize function.

CustomLibrary

string - ''
Code Generation
> Custom Code >
Initialize function
Libraries

Specify a space-separated list of
static library files to link with the
generated code.

CustomSource

string - ''
Code Generation
> Custom Code >
Source files

Specify a space-separated list of
source files to compile and link with
the generated code.

CustomSourceCode

string - ''
Code Generation
> Custom Code >
Source file

Specify code to appear near the top of
the generated model source file.



4 Configuration Parameters for Simulink Models

4-256

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CustomTerminator

string - ''
Code Generation
> Custom Code >
Terminate function

Specify code to appear in the
generated model terminate function.

RTWUseSimCustomCode

string - off, on
Code Generation >
Custom Code > Use
the same custom code
settings as Simulation
Target

Specify whether to use the same
custom code settings as those in the
Simulation Target > Custom Code
pane.

Command-Line Information: Code Generation Pane: Debug Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

ProfileTLC

string - off, on
Code Generation >
Debug > Profile TLC

Profile the execution time of each
TLC file used to generate code for
this model in HTML format.

RTWVerbose

string - off, on
Code Generation
> Debug > Verbose
build

Display messages indicating code
generation stages and compiler
output.

RetainRTWFile

string - off, on
Code Generation >
Debug > Retain .rtw
file

Retain the model.rtw file in the
current build folder.

TLCAssert

string - off, on
Code Generation >
Debug > Enable TLC
assertion

Produce a TLC stack trace when the
argument to the assert directives
evaluates to false.

TLCCoverage

string - off, on
Code Generation
> Debug > Start
TLC coverage when
generating code

Generate .log files containing
the number of times each line of
TLC code is executed during code
generation.

TLCDebug

string - off, on
Code Generation >
Debug > Start TLC
debugger when
generating code

Start the TLC debugger during
code generation at the beginning of
the TLC program. TLC breakpoint
statements automatically invoke
the TLC debugger regardless of this
setting.



 Parameter Reference

4-257

Command-Line Information: Code Generation Pane: Interface Tab

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CodeInterfacePackaging

string - C++ class,
Nonreusable function,
Reusable function

(Default is Nonreusable
function if TargetLang
is set to C, or C++ class if
TargetLang is set to C++)

Code Generation
> Interface > Code
interface packaging

Specify the packaging for the
generated C or C++ code interface.

CodeReplacementLibrary

string - None, GNU C99
extensions, Intel IPP
for x86-64 (Windows),
Intel IPP/SSE with GNU99

extensions for x86-64

(Windows), Intel IPP for
x86/Pentium (Windows),
Intel IPP/SSE with GNU99

extensions for x86/Pentium

(Windows), Intel IPP for
x86-64 (Linux), Intel IPP/
SSE with GNU99 extensions

for x86-64 (Linux)

(For ERT-based models,
additional values may be
available; see the Code
replacement library drop-
down list in the Configuration
Parameters dialog box.)

Code Generation
> Interface > Code
replacement library

Specify an application-specific math
library for your model. Verify that
your compiler supports the library
you want to use; otherwise compile-
time errors can occur.
None

GNU C99 extensions - GNU gcc
math library, which provides C99
extensions as defined by compiler
option -std=gnu99
Intel IPP for x86-64

(Windows) - Generates calls to
the Intel Performance Primitives
(IPP) library for the x86-64 Windows
platform.
Intel IPP/SSE with GNU99

extensions for x86-64

(Windows) - GNU libraries for Intel
Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE),
with GNU C99 extensions.
Intel IPP for x86/Pentium

(Windows) - Generates calls to the
Intel Performance Primitives (IPP)
library for the x86/Pentium Windows
platform.



4 Configuration Parameters for Simulink Models

4-258

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

Intel IPP/SSE with GNU99

extensions for x86/Pentium

(Windows) - Generates calls to the
GNU libraries for Intel Performance
Primitives (IPP) and Streaming
SIMD Extensions (SSE), with GNU
C99 extensions, for the x86/Pentium
Windows platform.
Intel IPP for x86-64 (Linux)

- Generates calls to the Intel
Performance Primitives (IPP) library
for the x86-64 Linux platform.
Intel IPP/SSE with GNU99

extensions for x86-64 (Linux)

- Generates calls to the GNU
libraries for Intel Performance
Primitives (IPP) and Streaming
SIMD Extensions (SSE), with GNU
C99 extensions, for the x86-64 Linux
platform.

CombineOutputUpdateFcns

string - off, on
Code Generation >
Interface > Single
output/update
function

Generate a model's output and
update routines into a single-step
function.

ExtMode

off, on
Code Generation >
Interface > Interface

Specify the data interface to be
generated with the code.

ExtModeMexArgs

string ('')
Code Generation >
Interface > Interface 
> External mode >
MEX-file arguments

Specify arguments that are passed
to an external mode interface MEX-
file for communicating with executing
targets.

ExtModeStaticAlloc

off, on
Code Generation >
Interface > Static
memory allocation

Use a static memory buffer for
external mode instead of allocating
dynamic memory (calls to malloc).



 Parameter Reference

4-259

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

ExtModeStaticAllocSize

integer (1000000)
Code Generation >
Interface > Static
memory buffer size

Specify the size in bytes of the
external mode static memory buffer.

ExtModeTransport

int - 0 for TCP/IP, 1 for serial
Code Generation >
Interface > Interface
> External mode >
Transport layer

Specify transport protocols for
external mode communications.

GenerateASAP2

off, on
Code Generation >
Interface > Interface

Specify the data interface to be
generated with the code.

GRTInterface

string - off (except on for GRT
models created before R2012a),
on

Code Generation >
Interface > Classic
call interface

Include a code interface (wrapper)
that is compatible with the pre-
R2012a GRT target.

LogVarNameModifier

string - none, rt_, _rt
Code Generation
> Interface > MAT-
file variable name
modifier

Augment the MAT-file variable
name.

MatFileLogging

string - off, on
(Default is on for GRT targets,
off for ERT targets)

Code Generation >
Interface > MAT-file
logging

Generate code that logs data to a
MAT-file.

MultiInstanceErrorCode

string - None, Warning, Error
Code Generation >
Interface >
Multi-instance code
error diagnostic

Specify the error diagnostic behavior
for cases when data defined in the
model violates the requirements for
generation of multi-instance code.

RTWCAPIParams

string - off, on
Code Generation >
Interface > Generate
C API for: parameters

Generate C API parameter tuning
structures.

RTWCAPIRootIo

string - off, on
Code Generation >
Interface > Generate
C API for: root-level I/
O

Generate a C API root-level I/O
structure



4 Configuration Parameters for Simulink Models

4-260

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

RTWCAPISignals

string - off, on
Code Generation >
Interface > Generate
C API for: signals

Generate C API signal structure.

RTWCAPIStates

string - off, on
Code Generation >
Interface > Generate
C API for: states

Generate C API state structure.

SupportNonFinite

string - off, on
Code Generation >
Interface > Support
non-finite numbers

Support nonfinite values (inf, nan, -
inf) in the generated code.

TargetLangStandard

string - C89/C90 (ANSI), C99
(ISO), C++03 (ISO)

Code Generation >
Interface > Standard
math library

Specify a standard math library for
your model. Verify that your compiler
supports the library you want to use;
otherwise compile-time errors can
occur.
C89/C90 (ANSI) - ISO/IEC
9899:1990 C standard math library
for floating-point functions
C99 (ISO) - ISO/IEC 9899:1999 C
standard math library
C++03 (ISO) - ISO/IEC 14882:2003
C++ standard math library

UtilityFuncGeneration

string - Auto, Shared location
Code Generation >
Interface > Shared
code placement

Specify where utility code is to be
generated.

Command-Line Information: Not in GUI

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CodeGenDirectory Not available For MathWorks use only.
Comment Not available For MathWorks use only.
CompOptLevelCompliant

off, on
Not available Set in SelectCallback for a

target to indicate whether the
target supports the ability to use
the Compiler optimization



 Parameter Reference

4-261

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

level parameter on the Code
Generation pane to control the
compiler optimization level for
building generated code.

Default is off for custom targets
and on for targets provided with the
Simulink Coder and Embedded Coder
products.

ConfigAtBuild Not available For MathWorks use only.
ConfigurationMode Not available For MathWorks use only.
ConfigurationScript Not available For MathWorks use only.
ERTCustomFileBanners Not available For MathWorks use only.
EvaledLifeSpan Not available For MathWorks use only.
ExtModeMexFile Not available For MathWorks use only.
ExtModeTesting Not available For MathWorks use only.
FoldNonRolledExpr Not available For MathWorks use only.
GenerateFullHeader Not available For MathWorks use only.
GenerateSharedConstants Not available Control whether the code generator

generates code with shared constants
and shared functions. Default is
on. off turns off shared constants,
shared functions, and subsystem
reuse across models.

IncAutoGenComments Not available For MathWorks use only.
IncludeRegionsInRTWFile

BlockHierarchyMap

Not available For MathWorks use only.

IncludeRootSignalInRTWFile Not available For MathWorks use only.
IncludeVirtualBlocksInRTW

FileBlockHierarchyMap

Not available For MathWorks use only.

IsERTTarget Not available For MathWorks use only.



4 Configuration Parameters for Simulink Models

4-262

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

ModelReferenceCompliant

string - off, on
Not available Set in SelectCallback for a target

to indicate whether the target
supports model reference.

ParamNamingFcn Not available For MathWorks use only.
PostCodeGenCommand

string - ''
Not available Add the specified post code

generation command to the model
build process.

PreserveName Not available For MathWorks use only.
PreserveNameWithParent Not available For MathWorks use only.
ProcessScript Not available For MathWorks use only.
ProcessScriptMode Not available For MathWorks use only.
SignalNamingFcn Not available For MathWorks use only.
SystemCodeInlineAuto Not available For MathWorks use only.
TargetFcnLib Not available For MathWorks use only.
TargetLibSuffix

string - ''
Not available Control the suffix used for naming

a target's dependent libraries
(for example, _target.lib or
_target.a). If specified, the
string must include a period (.).
(For generated model reference
libraries, the library suffix defaults to
_rtwlib.lib on Windows systems
and _rtwlib.a on UNIX systems.).

Note: To use this parameter with
the toolchain approach, see “Library
Control Parameters”

TargetPreCompLibLocation

string - ''
Not available Control the location of precompiled

libraries. If you do not set this
parameter, the code generator
uses the location specified in
rtwmakecfg.m.



 Parameter Reference

4-263

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

TargetPreprocMaxBitsSint

int - 32
Not available Specify the maximum number of bits

that the target C preprocessor can
use for signed integer math.

TargetPreprocMaxBitsUint

int - 32
Not available Specify the maximum number of bits

that the target C preprocessor can
use for unsigned integer math.

TargetTypeEmulationWarn

SuppressLevel

SuppressLevel

int - 0

Not available When greater than or equal to 2,
suppress warning messages that the
Simulink Coder software displays
when emulating integer sizes in rapid
prototyping environments.

TLCOptions

string - ''
Not available Specify additional TLC command line

options.



4-264



5

Model Advisor Checks



5 Model Advisor Checks

5-2

Simulink Coder Checks

In this section...

“Simulink Coder Checks Overview” on page 5-2
“Identify blocks using one-based indexing” on page 5-2
“Check solver for code generation” on page 5-3
“Check for blocks not supported by code generation” on page 5-5
“Check and update model to use toolchain approach to build generated code” on page
5-5
“Check and update the embedded target model to use ert.tlc system target file” on page
5-7
“Check for blocks that have constraints on tunable parameters” on page 5-9
“Check for model reference configuration mismatch” on page 5-10
“Check sample times and tasking mode” on page 5-11
“Code Generation Advisor Checks” on page 5-11

Simulink Coder Checks Overview

Use Simulink Coder Model Advisor checks to configure your model for code generation.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Embedded Coder Checks”

Identify blocks using one-based indexing

Identify blocks using one-based indexing.

Description

Zero-based indexing is more efficient in the generated code than one-based indexing.



 Simulink Coder Checks

5-3

Using zero-based indexing increases execution efficiency of the generated code.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
configured for one-based indexing.

Configure the blocks for zero-based
indexing. Update the supporting blocks.

The model or subsystem contains one or
more of the following, which require one-
based indexing:

• Fcn block
• MATLAB functions inside Stateflow

Charts
• MATLAB Function block
• MATLAB System block
• Stateflow Charts with MATLAB action

language
• State Transition Table block
• Truth Table block

Evaluate the blocks to determine if one-
based indexing is used. Consider replacing
the blocks with Simulink basic blocks.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• “cgsl_0101: Zero-based indexing”.
• “What Is a Model Advisor Exclusion?”

Check solver for code generation



5 Model Advisor Checks

5-4

Check model solver and sample time configuration settings.

Description

Incorrect configuration settings can stop the Simulink Coder software from generating
code. Underspecifying sample times can lead to undesired results. Avoid generating code
that might corrupt data or produce unpredictable behavior.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The solver type is set incorrectly for model
level code generation.

In the Configuration Parameters dialog
box, on the Solver pane, set

• “Type” to Fixed-step
• “Solver” to Discrete (no

continuous states)

Multitasking diagnostic options are not set
to error.

In the Configuration Parameters dialog
box, on the Diagnostics pane, set

• Sample Time > “Multitask
conditionally executed subsystem”
to error

• Sample Time > “Multitask rate
transition” to error

• Data Validity > “Multitask data
store” to error

Tips

You do not have to modify the solver settings to generate code from a subsystem. The
Embedded Coder build process automatically changes Solver type to fixed-step when
you select Code Generation > Build Subsystem or Code Generation > Generate S-
Function from the subsystem context menu.

See Also

• “Configure Scheduling”



 Simulink Coder Checks

5-5

• “Execute Multitasking Models”

Check for blocks not supported by code generation

Identify blocks not supported by code generation.

Description

This check partially identifies model constructs that are not suited for code generation
as identified in the Simulink Block Support tables for Simulink Coder and Embedded
Coder. If you are using blocks with support notes for code generation, review the
information and follow the given advice.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
that should not be used for code generation.

Consider replacing the blocks listed in the
results. Click an element from the list of
questionable items to locate condition.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

• “Supported Products and Block Usage”
• “What Is a Model Advisor Exclusion?”

Check and update model to use toolchain approach to build generated
code

Check if model uses Toolchain settings to build generated code.



5 Model Advisor Checks

5-6

Description

Checks whether the model uses the template makefile approach or the toolchain
approach to build the generated code.

Available with Simulink Coder.

When you open a model created before R2013b that has System target file set to
ert.tlc, ert_shrlib.tlc, or grt.tlc the software automatically tries to upgrade the
model from using the template makefile approach to using the toolchain approach.

If the software did not upgrade the model, this check determines the cause, and if
available, recommends actions you can perform to upgrade the model.

To determine which approach your model is using, you can also look at the Code
Generation pane in the Configuration Parameters dialog box. The toolchain approach
uses the following parameters to build generated code:

• “Toolchain”
• “Build configuration”

The template makefile approach uses the following settings to build generated code:

• Compiler optimization level
• Custom compiler optimization flags
• Generate makefile
• Template makefile

Results and Recommended Actions

Condition Recommended Action Comment

Model is
configured
to use the
toolchain
approach.

No action. The model was automatically upgraded.

Model is not
configured
to use the
toolchain
approach.

Model cannot be
automatically
upgraded to use the
toolchain approach.

The system target file is not toolchain-
compliant. Set System target file to a
toolchain-compliant target, such as ert.tlc,
ert_shrlib.tlc, or grt.tlc.



 Simulink Coder Checks

5-7

Condition Recommended Action Comment

Model is not
configured
to use the
toolchain
approach.
(Parameter
values are not
the default
values.)

Model can be
automatically
upgraded to use the
toolchain approach.
Click Update Model.

The parameters are set to their default
values, except Compiler Optimization
Level, which is set Optimizations on
(faster runs). Clicking Update Model
sets Compiler Optimization Level to
its default value, Optimizations off
(faster builds), and then upgrades
the model. The upgraded model has Build
Configuration set to Faster Builds.
Saving the model makes these changes
permanent.

Model is not
configured
to use the
toolchain
approach.
(Parameter
values are not
the default
values.)

Model cannot be
automatically
upgraded to use the
toolchain approach.

One or more of the following parameters is
not set to its default value:

• Generate makefile (default: Enabled)
• Template makefile (default: Target-

specific default TMF)
• Compiler optimization level (default:

Optimizations off (faster

builds))
• Make command (default: make_rtw

without arguments)

See “Upgrade Model to Use Toolchain
Approach”

Action Results

Clicking Update model upgrades the model to use the toolchain approach to build
generated code.

See Also

• “Upgrade Model to Use Toolchain Approach”

Check and update the embedded target model to use ert.tlc system target
file



5 Model Advisor Checks

5-8

Check and update the embedded target model to use ert.tlc system target file.

Description

Check and update models whose System target file is set to idelink_ert.tlc
or idelink_grt.tlc and whose target hardware is one of the supported Texas
Instruments C2000™ processors to use ert.tlc and similar settings.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

System target file is set to ert.tlc -
Embedded Coder.

No action

System target file is set to idelink_ert.tlc or
idelink_grt.tlc and Board parameter is set
to a processor that is supported by the Embedded
Coder Support Package for Texas Instruments
C2000 Processors.

Update model

Action Results

Clicking Update model automatically sets the following parameters on the Code
Generation pane in the model Configuration Parameters dialog box:

• System target file parameter to ert.tlc.
• Target hardware parameter to match the previous board or processor.
• Toolchain parameter to match the previous toolchain.
• Build configuration parameter to match the build configuration.

This action also sets the parameters on the Coder Target pane to match the previous
parameter values under the Peripherals tab.

Capabilities and Limitations

The new workflow uses the toolchain approach, which relies on enhanced makefiles to
build generated code. It does not provide an equivalent to setting the Build format
parameter to Project in the previous configuration. Therefore, the new workflow cannot
automatically generate IDE projects within the CCS 3.3 IDE.



 Simulink Coder Checks

5-9

See Also

“Toolchain”

Check for blocks that have constraints on tunable parameters

Identify blocks with constraints on tunable parameters.

Description

Lookup Table blocks have strict constraints when they are tunable. If you violate lookup
table block restrictions, the generated code produces wrong answers.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

Lookup Table blocks have tunable
parameters.

When tuning parameters during simulation
or when running the generated code, you
must:

• Preserve monotonicity of the setting for
the Vector of input values parameter.

• Preserve the number and location of
zero values that you specify for Vector
of input values and Vector of output
values parameters if you specify
multiple zero values for the Vector of
input values parameter.

Lookup Table (2-D) blocks have tunable
parameters.

When tuning parameters during simulation
or when running the generated code, you
must:

• Preserve monotonicity of the setting
for the Row index input values
and Column index of input values
parameters.

• Preserve the number and location of
zero values that you specify for Row
index input values, Column index of



5 Model Advisor Checks

5-10

Condition Recommended Action

input values, and Vector of output
values parameters if you specify
multiple zero values for the Row index
input values or Column index of
input values parameters.

Lookup Table (n-D) blocks have tunable
parameters.

When tuning parameters during simulation
or when running the generated code, you
must preserve the increasing monotonicity
of the breakpoint values for each table
dimension Breakpoints n.

Capabilities and Limitations

If you have a Simulink Verification and Validation license, you can exclude blocks and
charts from this check.

See Also

• 1-D Lookup Table
• 2-D Lookup Table
• “What Is a Model Advisor Exclusion?”

Check for model reference configuration mismatch

Identify referenced model configuration parameter settings that do not match the top
model configuration parameter settings.

Description

The code generator cannot create code for top models that contain referenced models with
different, incompatible configuration parameter settings.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The top model and the referenced model
have inconsistent model configuration
parameter settings.

Modify the specified model configuration
settings.



 Simulink Coder Checks

5-11

See Also

Model Referencing Configuration Parameter Requirements

Check sample times and tasking mode

Set up the sample time and tasking mode for your system.

Description

Incorrect tasking mode can result in inefficient code execution or incorrect generated
code.

Available with Simulink Coder.

Results and Recommended Actions

Condition Recommended Action

The model represents a multirate system
but is not configured for multitasking.

In the Configuration Parameters dialog
box, on the Solver pane, set the “Tasking
mode for periodic sample times”
parameter as recommended.

The model is configured for multitasking,
but multitasking is not desirable on the
target hardware.

In the Configuration Parameters dialog
box, on the Solver pane, set the “Tasking
mode for periodic sample times”
parameter to SingleTasking, or
change the settings on the “Hardware
Implementation” pane.

See Also

“Single-Tasking and Multitasking Execution Modes”

Code Generation Advisor Checks

• “Available Checks for Code Generation Objectives” on page 5-11
• “Identify questionable blocks within the specified system” on page 5-16
• “Check model configuration settings against code generation objectives” on page

5-17

Available Checks for Code Generation Objectives



5 Model Advisor Checks

5-12

Code generation objectives checks facilitate designing and troubleshooting Simulink
models and subsystems that you want to use to generate code.

The Code Generation Advisor includes the following checks for each of the code
generation objectives.

Check Execution
efficiency
(all
targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precaution
(ERT-
based
targets)

Traceability
(ERT-
based
targets)

Debugging
(all
targets)

MISRA-
C:2004
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Check model
configuration settings
against code generation
objectives” on page
5-17

Included IncludedIncludedIncludedIncludedIncludedIncludedIncluded

“Check for optimal bus
virtuality”

Included IncludedIncludedN/A N/A N/A N/A N/A

“Identify questionable
blocks within the specified
system” on page 5-16

Included IncludedIncludedN/A N/A N/A N/A N/A

“Check the hardware
implementation”

Included
if
Embedded
Coder is
available

Included
if
Embedded
Coder
is
available

N/A N/A N/A N/A N/A N/A

“Identify questionable
software environment
specifications”

Included
when
Traceability
is not a
higher
priority
and
Embedded
Coder is
available

Included
when
Traceability
is not a
higher
priority
and
Embedded
Coder

N/A N/A N/A N/A N/A N/A



 Simulink Coder Checks

5-13

Check Execution
efficiency
(all
targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precaution
(ERT-
based
targets)

Traceability
(ERT-
based
targets)

Debugging
(all
targets)

MISRA-
C:2004
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

is
available

“Identify questionable
code instrumentation
(data I/O)”

Included
when
Traceability
or
Debugging
are not
higher
priorities
and
Embedded
Coder is
available

Included
when
Traceability
or
Debugging
are not
higher
priorities
and
Embedded
Coder
is
available

Included
when
Traceability
or
Debugging
are not
higher
priorities
and
Embedded
Coder
is
available

N/A N/A N/A N/A N/A

“Identify questionable
subsystem settings”

N/A Included
if
Embedded
Coder
is
available

Included
if
Embedded
Coder
is
available

N/A N/A N/A N/A N/A

“Identify blocks that
generate expensive
rounding code”

Included
if
Embedded
Coder is
available

Included
if
Embedded
Coder
is
available

N/A N/A N/A N/A N/A N/A



5 Model Advisor Checks

5-14

Check Execution
efficiency
(all
targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precaution
(ERT-
based
targets)

Traceability
(ERT-
based
targets)

Debugging
(all
targets)

MISRA-
C:2004
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Identify questionable
fixed-point operations”

Included
if
Embedded
Coder or
Fixed-
Point
Designer
is
available

Included
if
Embedded
Coder
or
Fixed-
Point
Designer
is
available

N/A N/A N/A N/A N/A N/A

“Identify blocks using one-
based indexing” on page
5-2

Included IncludedN/A N/A N/A N/A N/A N/A

“Identify lookup table
blocks that generate
expensive out-of-range
checking code”

Included
if
Embedded
Coder is
available

Included
if
Embedded
Coder
is
available

N/A N/A N/A N/A N/A N/A

“Check output types of
logic blocks”

Included
if
Embedded
Coder is
available

N/A N/A N/A N/A N/A N/A N/A

“Identify unconnected
lines, input ports, and
output ports”

N/A N/A N/A IncludedN/A N/A N/A N/A



 Simulink Coder Checks

5-15

Check Execution
efficiency
(all
targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precaution
(ERT-
based
targets)

Traceability
(ERT-
based
targets)

Debugging
(all
targets)

MISRA-
C:2004
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Check Data Store
Memory blocks for
multitasking, strong
typing, and shadowing
issues”

N/A N/A N/A IncludedN/A N/A N/A N/A

“Identify block output
signals with continuous
sample time and non-
floating point data type”

N/A N/A N/A IncludedN/A N/A N/A N/A

“Check for blocks that
have constraints on
tunable parameters” on
page 5-9

N/A N/A N/A IncludedN/A N/A N/A N/A

“Check if read/write
diagnostics are enabled for
data store blocks”

N/A N/A N/A IncludedN/A N/A N/A N/A

“Check for partial
structure parameter usage
with bus signals”

N/A N/A N/A IncludedN/A N/A N/A N/A

“Check data store block
sample times for modeling
errors”

N/A N/A N/A IncludedN/A N/A N/A N/A

“Check for potential
ordering issues involving
data store access”

N/A N/A N/A IncludedN/A N/A N/A N/A



5 Model Advisor Checks

5-16

Check Execution
efficiency
(all
targets)

ROM
efficiency
(ERT-
based
targets)

RAM
efficiency
(ERT-
based
targets)

Safety
precaution
(ERT-
based
targets)

Traceability
(ERT-
based
targets)

Debugging
(all
targets)

MISRA-
C:2004
guidelines
(ERT-
based
targets)

Polyspace
(ERT-
based
targets)

“Check for blocks not
recommended for MISRA-
C:2004 compliance”

N/A N/A N/A N/A N/A N/A Included
if
Embedded
Coder
is
available

N/A

See Also

• “Application Objectives” in the Simulink Coder documentation.
• “Application Objectives” in the Embedded Coder documentation.
• “Run Model Checks” in the Simulink documentation.
• Simulink Model Advisor Check Reference in the Simulink documentation.
• “Simulink Coder Checks” on page 5-2.
• Simulink Verification and Validation Model Advisor Check Reference in the Simulink

Verification and Validation documentation.

Identify questionable blocks within the specified system

Identify blocks not supported by code generation or not recommended for deployment.

Description

The code generator creates code only for the blocks that it supports. Some blocks are not
recommended for production code deployment.

Results and Recommended Actions

Condition Recommended Action

A block is not supported by the Simulink
Coder software.

Remove the specified block from the model
or replace the block with the recommended
block.



 Simulink Coder Checks

5-17

Condition Recommended Action

A block is not recommended for production
code deployment.

Remove the specified block from the model
or replace the block with the recommended
block.

Check for Gain blocks whose value equals
1.

Replace Gain blocks with Signal
Conversion blocks.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Verification and

Validation license.

See Also

“Supported Products and Block Usage”

“What Is a Model Advisor Exclusion?”

Check model configuration settings against code generation objectives

Check the configuration parameter settings for the model against the code generation
objectives.
Description

Each parameter in the Configuration Parameters dialog box might have different
recommended settings for code generation based on your objectives. This check helps you
identify the recommended setting for each parameter so that you can achieve optimized
code based on your objective.
Results and Recommended Actions

Condition Recommended Action

Parameters are set to values other than
the value recommended for the specified
objectives.

Set the parameters to the recommended
values.

Note: A change to one parameter value
can impact other parameters. Passing the
check might take multiple iterations.



5 Model Advisor Checks

5-18

Action Results

Clicking Modify Parameters changes the parameter values to the recommended
values.

See Also

• The Simulink Coder “Recommended Settings Summary” on page 4-224
• The Embedded Coder “Recommended Settings Summary”
• “Application Objectives” in the Simulink Coder documentation.
• “Application Objectives” in the Embedded Coder documentation.



6

Parameters for Creating Protected
Models



6 Parameters for Creating Protected Models

6-2

Create Protected Model

In this section...

“Create Protected Model: Overview” on page 6-2
“Open read-only view of model” on page 6-3
“Simulate” on page 6-3
“Generate code” on page 6-4
“Generated code content type” on page 6-5
“Create protected model in” on page 6-6
“Create harness model for protected model” on page 6-6

Create Protected Model: Overview



 Create Protected Model

6-3

Create a protected model (.slxp) that allows read-only view, simulation, and code
generation of the model with optional password protection.

To open the Create Protected Model dialog box, right-click the model block that
references the model for which you want to generate protected model code. From the
context menu, select Subsystem & Model Reference > Create Protected Model for
Selected Model Block.

See Also

• “Protected Model”
• “Create a Protected Model”

Open read-only view of model

Share a view-only version of your protected model with optional password protection.
View-only version includes the contents and block parameters of the model.

Settings

Default: Off

 On
Share a Web view of the protected model. For password protection, create and verify
a password with a minimum of four characters.

 Off
Do not share a Web view of the protected model.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Create a Protected Model”
• “Protect a Referenced Model”

Simulate



6 Parameters for Creating Protected Models

6-4

Allow user to simulate a protected model with optional password protection. Selecting
Simulate:

• Enables protected model Simulation Report.
• Sets Mode to Accelerator. You can run Normal Mode and Accelerator simulations.
• Displays only binaries and headers.
• Enables code obfuscation.

Settings

Default: On

 On
User can simulate the protected model. For password protection, create and verify a
password with a minimum of four characters.

 Off
User cannot simulate the protected model.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Create a Protected Model”
• “Protect a Referenced Model”

Generate code

Allows user to generate code for the protected model with optional password protection.
Selecting Generate code:

• Enables Simulation Report and Code Generation Report for the protected model.
• Sets Mode to enable code generation.
• Enables support for simulation.
• Displays code in the build folder in obfuscated form.



 Create Protected Model

6-5

Settings

Default: Off

 On
User can generate code for the protected model. For password protection, create and
verify a password with a minimum of four characters.

 Off
User cannot generate code for the protected model.

Dependencies

• To generate code, you must also select the Simulate check box.
• This parameter enables Generated code content type.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Code Generation Support in a Protected Model”
• “Protect a Referenced Model”

Generated code content type

Select the appearance of the generated code. When you select the Generate code check
box, this parameter is enabled.

Settings

Default: Obfuscated source code

Binaries

Includes only binaries for the generated code.
Obfuscated source code

Includes obfuscated headers and binaries for the generated code.
Readable source code



6 Parameters for Creating Protected Models

6-6

Includes readable source code.

Dependencies

This parameter is enabled by selecting the Generate code check box.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Code Generation Support in a Protected Model”
• “Protect a Referenced Model”

Create protected model in

Specify the folder path for the protected model.

Settings

Default: Current working folder

Dependencies

A model that you protect must be available on the MATLAB path.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Protect a Referenced Model”
• “Create a Protected Model”

Create harness model for protected model

Create a harness model for the protected model. The harness model contains only a
Model block that references the protected model.



 Create Protected Model

6-7

Settings

Default: Off

 On
Create a harness model for the protected model.

 Off
Do not create a harness model for the protected model.

Alternatives

“Simulink.ModelReference.protect”

See Also

• “Harness Model”
• “Test the Protected Model”



6-8



7

Tools — Alphabetical List



7 Tools — Alphabetical List

7-2

Code Replacement Viewer
Explore content of code replacement libraries

Description
The Code Replacement Viewer displays the content of code replacement libraries. Use
the tool to explore and choose a library. If your are developing a custom code replacement
library, use the tool to verify table entries.

• Argument order is correct.
• Conceptual argument names match code generator naming conventions.
• Implementation argument names are correct.
• Header or source file specification is not missing.
• I/O types are correct.
• Relative priority of entries is correct (highest priority is 0, and lowest priority is 100).
• Saturation or rounding mode specifications are not missing.

If you specify a library name when you open the viewer, the viewer displays the code
replacement tables that the library contains. When you select a code replacement table,
the viewer displays function and operator code replacement entries that are in that table.

Abbreviated Entry Information

In the middle pane, the viewer displays entries that are in the selected code replacement
table, along with abbreviated information for each entry.

Field Description

Name Name or identifier of the function or operator being replaced
(for example, cos or RTW_OP_ADD).

Implementation Name of the implementation function, which can match or
differ from Name.

NumIn Number of input arguments.
In1Type Data type of the first conceptual input argument.
In2Type Data type of the second conceptual input argument.
OutType Data type of the conceptual output argument.



 Code Replacement Viewer

7-3

Field Description

Priority The entry's match priority, relative to other entries of the
same name and to the conceptual argument list within the
selected code replacement library. The priority can range from
0 to 100, with 0 being the highest priority. The default is 100.
If the library provides two implementations for a function
or operator, the implementation with the higher priority
shadows the one with the lower priority.

UsageCount Not used.

Detailed Entry Information

In the middle pane, when you select an entry, the viewer displays entry details.

Field Description

Description Text description of the table entry (can be empty).
Key Name or identifier of the function or operator being replaced (for

example, cos or RTW_OP_ADD), and the number of conceptual
input arguments.

Implementation Name of the implementation function, and the number of
implementation input arguments.

Implementation
type

Type of implementation: FCN_IMPL_FUNCT for function or
FCN_IMPL_MACRO for macro.

Saturation mode Saturation mode that the implementation function supports. One
of:
RTW_SATURATE_ON_OVERFLOW

RTW_WRAP_ON_OVERFLOW

RTW_SATURATE_UNSPECIFIED

Rounding modes Rounding modes that the implementation function supports. One
or more of:
RTW_ROUND_FLOOR

RTW_ROUND_CEILING

RTW_ROUND_ZERO

RTW_ROUND_NEAREST

RTW_ROUND_NEAREST_ML

RTW_ROUND_SIMPLEST



7 Tools — Alphabetical List

7-4

Field Description

RTW_ROUND_CONV

RTW_ROUND_UNSPECIFIED

GenCallback file Not used.
Implementation
header

Name of the header file that declares the implementation function.

Implementation
source

Name of the implementation source file.

Priority The entry's match priority, relative to other entries of the same
name and to the conceptual argument list within the selected
code replacement library. The priority can range from 0 to 100,
with 0 being the highest priority. The default is 100. If the library
provides two implementations for a function or operator, the
implementation with the higher priority shadows the one with the
lower priority.

Total Usage
Count

Not used.

Entry class Class from which the current table entry is instantiated.
Conceptual
arguments

Name, I/O type (RTW_IO_OUTPUT or RTW_IO_INPUT), and data
type for each conceptual argument.

Implementation Name, I/O type (RTW_IO_OUTPUT or RTW_IO_INPUT), data type,
and alignment requirement for each implementation argument.

Fixed-Point Entry Information

When you select an operator entry that specifies net slope fixed-point parameters, the
viewer displays fixed-point information.

Field Description

Net slope
adjustment factor
F

Slope adjustment factor (F) part of the net slope factor, F2E ,
for net slope table entries. You use this factor with fixed-point
multiplication and division replacement to map a range of slope
and bias values to a replacement function.

Net fixed exponent
E

Fixed exponent (E) part of the net slope factor, F2E, for net
slope table entries. You use this fixed exponent with fixed-point



 Code Replacement Viewer

7-5

Field Description

multiplication and division replacement to map a range of slope
and bias values to a replacement function.

Slopes must be the
same

Indicates whether code replacement request processing must
check that the slopes on arguments (input and output) are
equal. You use this information with fixed-point addition and
subtraction replacement to disregard specific slope and bias
values, and map relative slope and bias values to a replacement
function.

Must have zero net
bias

Indicates whether code replacement request processing
must check that the net bias on arguments is zero. You use
this information with fixed-point addition and subtraction
replacement to disregard specific slope and bias values, and map
relative slope and bias values to a replacement function.

Open the Code Replacement Viewer

Open from the MATLAB command prompt using RTW.viewTfl

Examples

Display Contents of Code Replacement Library

RTW.viewTfl('Sin Function Example')



7 Tools — Alphabetical List

7-6

Display Contents of Code Replacement Table

RTW.viewTfl(crl_ttable_sinfcn)



 Code Replacement Viewer

7-7

• “Choose a Code Replacement Library”

Programmatic Use

RTW.viewTfl(library) opens the Code Replacement Viewer and displays the contents
of library, where library is a string that names a registered code replacement library. For
example, 'GNU 99 extensions'.

RTW.viewTfl(table) opens the Code Replacement Viewer and displays the contents of
table, where table is a MATLAB file that defines code replacement tables. The file must
be in the current folder or on the MATLAB path.

More About
• “What Is Code Replacement?”
• “Code Replacement Libraries”



7 Tools — Alphabetical List

7-8

• “Code Replacement Terminology”


